topdown
sleap_nn.inference.topdown
¶
Inference modules for TopDown centroid and centered-instance models.
Classes:
Name | Description |
---|---|
CentroidCrop |
Lightning Module for running inference for a centroid model. |
FindInstancePeaks |
Lightning Module that predicts instance peaks from images using a trained model. |
FindInstancePeaksGroundTruth |
LightningModule that simulates a centered instance peaks model. |
TopDownInferenceModel |
Top-down instance prediction model. |
TopDownMultiClassFindInstancePeaks |
Lightning Module that predicts instance peaks from images using a trained model. |
CentroidCrop
¶
Bases: LightningModule
Lightning Module for running inference for a centroid model.
This layer encapsulates all of the inference operations requires for generating predictions from a centroid confidence map model. This includes model forward pass, generating crops for cenetered instance model, peak finding, coordinate adjustment and cropping.
Attributes:
Name | Type | Description |
---|---|---|
torch_model |
A |
|
max_instances |
Max number of instances to consider during centroid predictions. |
|
output_stride |
Output stride of the model, denoting the scale of the output confidence maps relative to the images (after input scaling). This is used for adjusting the peak coordinates to the image grid. |
|
peak_threshold |
Minimum confidence map value to consider a global peak as valid. |
|
refinement |
If |
|
integral_patch_size |
Size of patches to crop around each rough peak for integral refinement as an integer scalar. |
|
return_confmaps |
If |
|
return_crops |
If |
|
crop_hw |
Tuple (height, width) representing the crop size. |
|
input_scale |
Float indicating if the images should be resized before being passed to the model. |
|
precrop_resize |
Float indicating the factor by which the original images (not images resized for centroid model) should be resized before cropping. Note: This resize happens only after getting the predictions for centroid model. |
|
max_stride |
Maximum stride in a model that the images must be divisible by.
If > 1, this will pad the bottom and right of the images to ensure they meet
this divisibility criteria. Padding is applied after the scaling specified
in the |
|
use_gt_centroids |
If |
|
anchor_ind |
The index of the node to use as the anchor for the centroid. If not provided or if not present in the instance, the midpoint of the bounding box is used instead. |
Methods:
Name | Description |
---|---|
__init__ |
Initialise the model attributes. |
forward |
Predict centroid confidence maps and crop around peaks. |
Source code in sleap_nn/inference/topdown.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
__init__(torch_model=None, output_stride=1, peak_threshold=0.0, max_instances=None, refinement=None, integral_patch_size=5, return_confmaps=False, return_crops=False, crop_hw=None, input_scale=1.0, precrop_resize=1.0, max_stride=1, use_gt_centroids=False, anchor_ind=None, **kwargs)
¶
Initialise the model attributes.
Source code in sleap_nn/inference/topdown.py
forward(inputs)
¶
Predict centroid confidence maps and crop around peaks.
This layer can be chained with a FindInstancePeaks
layer to create a top-down
inference function from full images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Dict[str, Tensor]
|
Dictionary with key |
required |
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
A list of dictionaries (size = batch size) where each dictionary has cropped
images with key |
Source code in sleap_nn/inference/topdown.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
FindInstancePeaks
¶
Bases: LightningModule
Lightning Module that predicts instance peaks from images using a trained model.
This layer encapsulates all of the inference operations required for generating predictions from a centered instance confidence map model. This includes model forward pass, peak finding and coordinate adjustment.
Attributes:
Name | Type | Description |
---|---|---|
torch_model |
A |
|
output_stride |
Output stride of the model, denoting the scale of the output confidence maps relative to the images (after input scaling). This is used for adjusting the peak coordinates to the image grid. |
|
peak_threshold |
Minimum confidence map value to consider a global peak as valid. |
|
refinement |
If |
|
integral_patch_size |
Size of patches to crop around each rough peak for integral refinement as an integer scalar. |
|
return_confmaps |
If |
|
input_scale |
Float indicating the scale with which the images were scaled before cropping. |
|
max_stride |
Maximum stride in a model that the images must be divisible by.
If > 1, this will pad the bottom and right of the images to ensure they meet
this divisibility criteria. Padding is applied after the scaling specified
in the |
Methods:
Name | Description |
---|---|
__init__ |
Initialise the model attributes. |
forward |
Predict confidence maps and infer peak coordinates. |
Source code in sleap_nn/inference/topdown.py
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
__init__(torch_model, output_stride=None, peak_threshold=0.0, refinement=None, integral_patch_size=5, return_confmaps=False, input_scale=1.0, max_stride=1, **kwargs)
¶
Initialise the model attributes.
Source code in sleap_nn/inference/topdown.py
forward(inputs)
¶
Predict confidence maps and infer peak coordinates.
This layer can be chained with a CentroidCrop
layer to create a top-down
inference function from full images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Dict[str, Tensor]
|
Dictionary with keys:
|
required |
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
A dictionary of outputs with keys:
If provided (e.g., from an input |
Source code in sleap_nn/inference/topdown.py
FindInstancePeaksGroundTruth
¶
Bases: LightningModule
LightningModule that simulates a centered instance peaks model.
This layer is useful for testing and evaluating centroid models.
Methods:
Name | Description |
---|---|
__init__ |
Initialise the model attributes. |
forward |
Return the ground truth instance peaks given a set of crops. |
Source code in sleap_nn/inference/topdown.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
__init__(**kwargs)
¶
forward(batch)
¶
Return the ground truth instance peaks given a set of crops.
Source code in sleap_nn/inference/topdown.py
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
TopDownInferenceModel
¶
Bases: LightningModule
Top-down instance prediction model.
This model encapsulates the top-down approach where instances are first detected by local peak detection of an anchor point and then cropped. These instance-centered crops are then passed to an instance peak detector which is trained to detect all remaining body parts for the instance that is centered within the crop.
Attributes:
Name | Type | Description |
---|---|---|
centroid_crop |
A centroid cropping layer. This can be either |
|
instance_peaks |
A instance peak detection layer. This can be either |
Methods:
Name | Description |
---|---|
__init__ |
Initialize the class with Inference models. |
forward |
Predict instances for one batch of images. |
Source code in sleap_nn/inference/topdown.py
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
|
__init__(centroid_crop, instance_peaks)
¶
Initialize the class with Inference models.
Source code in sleap_nn/inference/topdown.py
forward(batch)
¶
Predict instances for one batch of images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Dict[str, Tensor]
|
This is a dictionary containing the image batch in the |
required |
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
The predicted instances as a list of dictionaries of tensors with the entries in example along with the below keys:
|
Source code in sleap_nn/inference/topdown.py
TopDownMultiClassFindInstancePeaks
¶
Bases: LightningModule
Lightning Module that predicts instance peaks from images using a trained model.
This layer encapsulates all of the inference operations required for generating predictions from a centered instance confidence map model. This includes model forward pass, peak finding and coordinate adjustment.
Attributes:
Name | Type | Description |
---|---|---|
torch_model |
A |
|
output_stride |
Output stride of the model, denoting the scale of the output confidence maps relative to the images (after input scaling). This is used for adjusting the peak coordinates to the image grid. |
|
peak_threshold |
Minimum confidence map value to consider a global peak as valid. |
|
refinement |
If |
|
integral_patch_size |
Size of patches to crop around each rough peak for integral refinement as an integer scalar. |
|
return_confmaps |
If |
|
return_class_vectors |
If |
|
input_scale |
Float indicating the scale with which the images were scaled before cropping. |
|
max_stride |
Maximum stride in a model that the images must be divisible by.
If > 1, this will pad the bottom and right of the images to ensure they meet
this divisibility criteria. Padding is applied after the scaling specified
in the |
Methods:
Name | Description |
---|---|
__init__ |
Initialise the model attributes. |
forward |
Predict confidence maps and infer peak coordinates. |
Source code in sleap_nn/inference/topdown.py
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
|
__init__(torch_model, output_stride=None, peak_threshold=0.0, refinement='integral', integral_patch_size=5, return_confmaps=False, return_class_vectors=False, input_scale=1.0, max_stride=1, **kwargs)
¶
Initialise the model attributes.
Source code in sleap_nn/inference/topdown.py
forward(inputs)
¶
Predict confidence maps and infer peak coordinates.
This layer can be chained with a CentroidCrop
layer to create a top-down
inference function from full images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Dict[str, Tensor]
|
Dictionary with keys:
|
required |
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
A dictionary of outputs with keys:
If provided (e.g., from an input |
Source code in sleap_nn/inference/topdown.py
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
|