swint
sleap_nn.architectures.swint
¶
This module provides a generalized implementation of SwinT.
See the SwinTWrapper
class docstring for more information.
Classes:
Name | Description |
---|---|
SwinTWrapper |
SwinT architecture for pose estimation. |
SwinTransformerEncoder |
SwinT backbone for pose estimation. |
SwinTWrapper
¶
Bases: Module
SwinT architecture for pose estimation.
This class defines the SwinT architecture for pose estimation, combining an SwinT as the encoder and a decoder. The encoder extracts features from the input, while the decoder generates confidence maps based on the features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels
|
int
|
Number of input channels. Default is 1. |
1
|
model_type
|
str
|
One of the ConvNext architecture types: ["tiny", "small", "base"]. |
required |
output_stride
|
int
|
Minimum of the strides of the output heads. The input confidence map. |
required |
patch_size
|
List[int]
|
Patch size. Default: [4,4] |
[4, 4]
|
arch
|
dict
|
Dictionary of embed dimension, depths and number of heads in each layer. |
{'embed': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24]}
|
{'embed'
|
96, 'depths': [2,2,6,2], 'channels':[3, 6, 12, 24]} |
required | |
window_size
|
List[int]
|
Window size. Default: [7,7]. |
[7, 7]
|
stem_patch_stride
|
int
|
Stride for the patch. Default is 2. |
2
|
kernel_size
|
int
|
Size of the convolutional kernels. Default is 3. |
3
|
filters_rate
|
int
|
Factor to adjust the number of filters per block. Default is 2. |
2
|
convs_per_block
|
int
|
Number of convolutional layers per block. Default is 2. |
2
|
up_interpolate
|
bool
|
If True, use bilinear interpolation instead of transposed convolutions for upsampling. Interpolation is faster but transposed convolutions may be able to learn richer or more complex upsampling to recover details from higher scales. |
True
|
max_stride
|
int
|
Factor by which input image size is reduced through the layers.
This is always |
32
|
block_contraction
|
bool
|
If True, reduces the number of filters at the end of middle and decoder blocks. This has the effect of introducing an additional bottleneck before each upsampling step. |
False
|
Methods:
Name | Description |
---|---|
__init__ |
Initialize the class. |
forward |
Forward pass through the SwinT architecture. |
from_config |
Create SwinTWrapper from a config. |
Attributes:
Name | Type | Description |
---|---|---|
max_channels |
Returns the maximum channels of the SwinT (last layer of the encoder). |
Source code in sleap_nn/architectures/swint.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
|
max_channels
property
¶
Returns the maximum channels of the SwinT (last layer of the encoder).
__init__(model_type, output_stride, in_channels=1, patch_size=[4, 4], arch={'embed': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24]}, window_size=[7, 7], stem_patch_stride=2, kernel_size=3, filters_rate=2, convs_per_block=2, up_interpolate=True, max_stride=32, block_contraction=False)
¶
Initialize the class.
Source code in sleap_nn/architectures/swint.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
|
forward(x)
¶
Forward pass through the SwinT architecture.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
Returns:
Name | Type | Description |
---|---|---|
x |
Tuple[List[Tensor], List]
|
Outputs a dictionary with |
Source code in sleap_nn/architectures/swint.py
from_config(config)
classmethod
¶
Create SwinTWrapper from a config.
Source code in sleap_nn/architectures/swint.py
SwinTransformerEncoder
¶
Bases: Module
SwinT backbone for pose estimation.
This class implements ConvNext from the "Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows
https://arxiv.org/abs/2103.14030`paper.
Source: torchvision.models. This module serves as the backbone/ encoder architecture
to extract features from the input image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels
|
int
|
Number of input channels. Default is 1. |
1
|
patch_size
|
List[int]
|
Patch size. Default: [4,4] |
[4, 4]
|
embed_dim
|
int
|
Patch embedding dimension. Default: 96 |
96
|
depths
|
List(int)
|
Depth of each Swin Transformer layer. Default: [2,2,6,2]. |
[2, 2, 6, 2]
|
num_heads
|
List(int)
|
Number of attention heads in different layers. Default: [3,6,12,24]. |
[3, 6, 12, 24]
|
window_size
|
List[int]
|
Window size. Default: [7,7]. |
[7, 7]
|
stem_stride
|
int
|
Stride for the patch. Default is 2. |
2
|
mlp_ratio
|
float
|
Ratio of mlp hidden dim to embedding dim. Default: 4.0. |
4.0
|
dropout
|
float
|
Dropout rate. Default: 0.0. |
0.0
|
attention_dropout
|
float
|
Attention dropout rate. Default: 0.0. |
0.0
|
stochastic_depth_prob
|
float
|
Stochastic depth rate. Default: 0.1. |
0.1
|
num_classes
|
int
|
Number of classes for classification head. Default: 1000. |
required |
block
|
Module
|
SwinTransformer Block. Default: None. |
required |
norm_layer
|
Module
|
Normalization layer. Default: None. |
None
|
downsample_layer
|
Module
|
Downsample layer (patch merging). Default: PatchMerging. |
required |
Methods:
Name | Description |
---|---|
__init__ |
Initialize the class. |
forward |
Forward pass through the SwinT encoder. |
Source code in sleap_nn/architectures/swint.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
__init__(in_channels=1, patch_size=[4, 4], embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=[7, 7], stem_stride=2, mlp_ratio=4.0, dropout=0.0, attention_dropout=0.0, stochastic_depth_prob=0.1, norm_layer=None)
¶
Initialize the class.
Source code in sleap_nn/architectures/swint.py
forward(x)
¶
Forward pass through the SwinT encoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
Outputs a list of tensors from each stage after applying the SwinT backbone. |