unet
sleap_nn.architectures.unet
¶
This module provides a generalized implementation of UNet.
See the UNet
class docstring for more information.
Classes:
Name | Description |
---|---|
UNet |
U-Net architecture for pose estimation. |
UNet
¶
Bases: Module
U-Net architecture for pose estimation.
This class defines the U-Net architecture for pose estimation, combining an encoder and a decoder. The encoder extracts features from the input, while the decoder generates confidence maps based on the features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels
|
int
|
Number of input channels. Default is 1. |
1
|
output_stride
|
int
|
Minimum of the strides of the output heads. The input confidence map. |
2
|
kernel_size
|
int
|
Size of the convolutional kernels. Default is 3. |
3
|
stem_kernel_size
|
int
|
Kernle size for the stem blocks. |
7
|
filters
|
int
|
Number of filters for the initial block. Default is 32. |
32
|
filters_rate
|
int
|
Factor to adjust the number of filters per block. Default is 1.5. |
1.5
|
down_blocks
|
int
|
Number of downsampling blocks. Default is 4. |
4
|
up_blocks
|
int
|
Number of upsampling blocks in the decoder. Default is 3. |
3
|
stem_blocks
|
int
|
If >0, will create additional "down" blocks for initial downsampling. These will be configured identically to the down blocks below. |
0
|
convs_per_block
|
int
|
Number of convolutional layers per block. Default is 2. |
2
|
middle_block
|
bool
|
If True, add an additional block at the end of the encoder. |
True
|
up_interpolate
|
bool
|
If True, use bilinear interpolation instead of transposed convolutions for upsampling. Interpolation is faster but transposed convolutions may be able to learn richer or more complex upsampling to recover details from higher scales. |
True
|
block_contraction
|
bool
|
If True, reduces the number of filters at the end of middle and decoder blocks. This has the effect of introducing an additional bottleneck before each upsampling step. The original implementation does not do this, but the CARE implementation does. |
False
|
Methods:
Name | Description |
---|---|
__init__ |
Initialize the class. |
forward |
Forward pass through the U-Net architecture. |
from_config |
Create UNet from a config. |
Attributes:
Name | Type | Description |
---|---|---|
max_channels |
Returns the maximum channels of the UNet (last layer of the encoder). |
Source code in sleap_nn/architectures/unet.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
max_channels
property
¶
Returns the maximum channels of the UNet (last layer of the encoder).
__init__(output_stride=2, in_channels=1, kernel_size=3, stem_kernel_size=7, filters=32, filters_rate=1.5, down_blocks=4, up_blocks=3, stem_blocks=0, convs_per_block=2, middle_block=True, up_interpolate=True, block_contraction=False, stacks=1)
¶
Initialize the class.
Source code in sleap_nn/architectures/unet.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
forward(x)
¶
Forward pass through the U-Net architecture.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
Returns:
Name | Type | Description |
---|---|---|
x |
Tuple[List[Tensor], List]
|
Output a tensor after applying the U-Net operations. current_strides: a list of the current strides from the decoder. |
Source code in sleap_nn/architectures/unet.py
from_config(config)
classmethod
¶
Create UNet from a config.