providers
sleap_nn.data.providers
¶
This module implements pipeline blocks for reading input data such as labels.
Classes:
Name | Description |
---|---|
LabelsReader |
Thread module for reading images from sleap-io Labels object. |
VideoReader |
Thread module for reading frames from sleap-io Video object. |
Functions:
Name | Description |
---|---|
get_max_height_width |
Return |
get_max_instances |
Get the maximum number of instances in a single LabeledFrame. |
process_lf |
Get sample dict from |
LabelsReader
¶
Bases: Thread
Thread module for reading images from sleap-io Labels object.
This module will load the images from .slp
files and pushes them as Tensors into a
buffer queue as a dictionary with (image, frame index, video index, (height, width))
which are then batched and consumed during the inference process.
Attributes:
Name | Type | Description |
---|---|---|
labels |
sleap_io.Labels object that contains LabeledFrames that will be accessed through a torchdata DataPipe. |
|
frame_buffer |
Frame buffer queue. |
|
instances_key |
If |
|
only_labeled_frames |
(bool) |
|
only_suggested_frames |
(bool) |
Methods:
Name | Description |
---|---|
__init__ |
Initialize attribute of the class. |
from_filename |
Create LabelsReader from a .slp filename. |
run |
Adds frames to the buffer queue. |
total_len |
Returns the total number of frames in the video. |
Source code in sleap_nn/data/providers.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
max_height_and_width
property
¶
Return (height, width)
of frames in the video.
__init__(labels, frame_buffer, instances_key=False, only_labeled_frames=False, only_suggested_frames=False)
¶
Initialize attribute of the class.
Source code in sleap_nn/data/providers.py
from_filename(filename, queue_maxsize, instances_key=False, only_labeled_frames=False, only_suggested_frames=False)
classmethod
¶
Create LabelsReader from a .slp filename.
Source code in sleap_nn/data/providers.py
run()
¶
Adds frames to the buffer queue.
Source code in sleap_nn/data/providers.py
VideoReader
¶
Bases: Thread
Thread module for reading frames from sleap-io Video object.
This module will load the frames from video and pushes them as Tensors into a buffer queue as a dictionary with (image, frame index, video index, (height, width)) which are then batched and consumed during the inference process.
Attributes:
Name | Type | Description |
---|---|---|
video |
sleap_io.Video object that contains images that will be accessed through a torchdata DataPipe. |
|
frame_buffer |
Frame buffer queue. |
|
frames |
List of frames indices. If |
Methods:
Name | Description |
---|---|
__init__ |
Initialize attribute of the class. |
from_filename |
Create VideoReader from a .slp filename. |
from_video |
Create VideoReader from a video object. |
run |
Adds frames to the buffer queue. |
total_len |
Returns the total number of frames in the video. |
Source code in sleap_nn/data/providers.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
max_height_and_width
property
¶
Return (height, width)
of frames in the video.
__init__(video, frame_buffer, frames=None)
¶
Initialize attribute of the class.
Source code in sleap_nn/data/providers.py
from_filename(filename, queue_maxsize, frames=None, dataset=None, input_format='channels_last')
classmethod
¶
Create VideoReader from a .slp filename.
Source code in sleap_nn/data/providers.py
from_video(video, queue_maxsize, frames=None)
classmethod
¶
Create VideoReader from a video object.
Source code in sleap_nn/data/providers.py
run()
¶
Adds frames to the buffer queue.
Source code in sleap_nn/data/providers.py
get_max_height_width(labels)
¶
Return (height, width)
that is the maximum of all videos.
Source code in sleap_nn/data/providers.py
get_max_instances(labels)
¶
Get the maximum number of instances in a single LabeledFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
labels
|
Labels
|
sleap_io.Labels object that contains LabeledFrames. |
required |
Returns:
Type | Description |
---|---|
Maximum number of instances that could occur in a single LabeledFrame. |
Source code in sleap_nn/data/providers.py
process_lf(lf, video_idx, max_instances, user_instances_only=True)
¶
Get sample dict from sio.LabeledFrame
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lf
|
LabeledFrame
|
Input |
required |
video_idx
|
int
|
Video index of the given lf. |
required |
max_instances
|
int
|
Maximum number of instances that could occur in a single LabeledFrame. |
required |
user_instances_only
|
bool
|
True if filter labels only to user instances else False. Default: True. |
True
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dict with image, instancs, frame index, video index, original image size and number of instances. |