bottomup
sleap_nn.inference.bottomup
¶
Inference modules for BottomUp models.
Classes:
Name | Description |
---|---|
BottomUpInferenceModel |
BottomUp Inference model. |
BottomUpMultiClassInferenceModel |
BottomUp Inference model for multi-class models. |
BottomUpInferenceModel
¶
Bases: LightningModule
BottomUp Inference model.
This model encapsulates the bottom-up approach. The images are passed to a peak detector to get the predicted instances and then fed into PAF to combine nodes belonging to the same instance.
Attributes:
Name | Type | Description |
---|---|---|
torch_model |
A |
|
paf_scorer |
A |
|
cms_output_stride |
Output stride of the model, denoting the scale of the output confidence maps relative to the images (after input scaling). This is used for adjusting the peak coordinates to the image grid. |
|
pafs_output_stride |
Output stride of the model, denoting the scale of the output pafs relative to the images (after input scaling). This is used for adjusting the peak coordinates to the image grid. |
|
peak_threshold |
Minimum confidence map value to consider a global peak as valid. |
|
refinement |
If |
|
integral_patch_size |
Size of patches to crop around each rough peak for integral refinement as an integer scalar. |
|
return_confmaps |
If |
|
return_pafs |
If |
|
return_paf_graph |
If |
|
input_scale |
Float indicating if the images should be resized before being passed to the model. |
Methods:
Name | Description |
---|---|
__init__ |
Initialise the model attributes. |
forward |
Predict confidence maps and infer peak coordinates. |
Source code in sleap_nn/inference/bottomup.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
__init__(torch_model, paf_scorer, cms_output_stride=None, pafs_output_stride=None, peak_threshold=0.0, refinement='integral', integral_patch_size=5, return_confmaps=False, return_pafs=False, return_paf_graph=False, input_scale=1.0)
¶
Initialise the model attributes.
Source code in sleap_nn/inference/bottomup.py
forward(inputs)
¶
Predict confidence maps and infer peak coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Dict[str, Tensor]
|
Dictionary with "image" as one of the keys. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
A dictionary of outputs with keys:
|
Source code in sleap_nn/inference/bottomup.py
BottomUpMultiClassInferenceModel
¶
Bases: LightningModule
BottomUp Inference model for multi-class models.
This model encapsulates the bottom-up approach. The images are passed to a local peak detector to get the predicted instances and then grouped into instances by their identity classifications.
Attributes:
Name | Type | Description |
---|---|---|
torch_model |
A |
|
cms_output_stride |
Output stride of the model, denoting the scale of the output confidence maps relative to the images (after input scaling). This is used for adjusting the peak coordinates to the image grid. |
|
class_maps_output_stride |
Output stride of the model, denoting the scale of the output pafs relative to the images (after input scaling). This is used for adjusting the peak coordinates to the image grid. |
|
peak_threshold |
Minimum confidence map value to consider a global peak as valid. |
|
refinement |
If |
|
integral_patch_size |
Size of patches to crop around each rough peak for integral refinement as an integer scalar. |
|
return_confmaps |
If |
|
return_class_maps |
If |
|
input_scale |
Float indicating if the images should be resized before being passed to the model. |
Methods:
Name | Description |
---|---|
__init__ |
Initialise the model attributes. |
forward |
Predict confidence maps and infer peak coordinates. |
Source code in sleap_nn/inference/bottomup.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
__init__(torch_model, cms_output_stride=None, class_maps_output_stride=None, peak_threshold=0.0, refinement='integral', integral_patch_size=5, return_confmaps=False, return_class_maps=False, input_scale=1.0)
¶
Initialise the model attributes.
Source code in sleap_nn/inference/bottomup.py
forward(inputs)
¶
Predict confidence maps and infer peak coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Dict[str, Tensor]
|
Dictionary with "image" as one of the keys. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Tensor]
|
A dictionary of outputs with keys:
|