Skip to content

predictors

sleap_nn.inference.predictors

Predictors for running inference.

Classes:

Name Description
BottomUpMultiClassPredictor

BottomUp ID model predictor.

BottomUpPredictor

BottomUp model predictor.

Predictor

Base interface class for predictors.

RateColumn

Renders the progress rate.

SingleInstancePredictor

Single-Instance predictor.

TopDownMultiClassPredictor

Top-down multi-class predictor.

TopDownPredictor

Top-down multi-instance predictor.

BottomUpMultiClassPredictor

Bases: Predictor

BottomUp ID model predictor.

This high-level class handles initialization, preprocessing and predicting using a trained BottomUp SLEAP-NN model.

This should be initialized using the from_trained_models() constructor.

Attributes:

Name Type Description
bottomup_config Optional[OmegaConf]

A OmegaConfig dictionary with the configs used for training the multi_class_bottomup model.

bottomup_model Optional[LightningModule]

A LightningModule instance created from the trained weights for multi_class_bottomup model.

backbone_type str

Backbone model. One of unet, convnext and swint.

videos Optional[List[Video]]

List of sio.Video objects for creating the sio.Labels object from the output predictions.

skeletons Optional[List[Skeleton]]

List of sio.Skeleton objects for creating sio.Labels object from the output predictions.

peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

batch_size int

(int) Number of samples per batch. Default: 4.

max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu".

preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

Methods:

Name Description
from_trained_models

Create predictor from saved models.

make_pipeline

Make a data loading pipeline.

Source code in sleap_nn/inference/predictors.py
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
@attrs.define
class BottomUpMultiClassPredictor(Predictor):
    """BottomUp ID model predictor.

    This high-level class handles initialization, preprocessing and predicting using a
    trained BottomUp SLEAP-NN model.

    This should be initialized using the `from_trained_models()` constructor.

    Attributes:
        bottomup_config: A OmegaConfig dictionary with the configs used for training the
                        multi_class_bottomup model.
        bottomup_model: A LightningModule instance created from the trained weights for
                       multi_class_bottomup model.
        backbone_type: Backbone model. One of `unet`, `convnext` and `swint`.
        videos: List of `sio.Video` objects for creating the `sio.Labels` object from
                        the output predictions.
        skeletons: List of `sio.Skeleton` objects for creating `sio.Labels` object from
                        the output predictions.
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu".
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    """

    bottomup_config: Optional[OmegaConf] = attrs.field(default=None)
    bottomup_model: Optional[L.LightningModule] = attrs.field(default=None)
    backbone_type: str = "unet"
    videos: Optional[List[sio.Video]] = attrs.field(default=None)
    skeletons: Optional[List[sio.Skeleton]] = attrs.field(default=None)
    peak_threshold: float = 0.2
    integral_refinement: str = "integral"
    integral_patch_size: int = 5
    batch_size: int = 4
    max_instances: Optional[int] = None
    return_confmaps: bool = False
    device: str = "cpu"
    preprocess_config: Optional[OmegaConf] = None
    max_stride: int = 16

    def _initialize_inference_model(self):
        """Initialize the inference model from the trained models and configuration."""
        # initialize the BottomUpMultiClassInferenceModel
        self.inference_model = BottomUpMultiClassInferenceModel(
            torch_model=self.bottomup_model,
            peak_threshold=self.peak_threshold,
            cms_output_stride=self.bottomup_config.model_config.head_configs.multi_class_bottomup.confmaps.output_stride,
            class_maps_output_stride=self.bottomup_config.model_config.head_configs.multi_class_bottomup.class_maps.output_stride,
            refinement=self.integral_refinement,
            integral_patch_size=self.integral_patch_size,
            return_confmaps=self.return_confmaps,
            input_scale=self.bottomup_config.data_config.preprocessing.scale,
        )

    @classmethod
    def from_trained_models(
        cls,
        bottomup_ckpt_path: Optional[Text] = None,
        backbone_ckpt_path: Optional[str] = None,
        head_ckpt_path: Optional[str] = None,
        peak_threshold: float = 0.2,
        integral_refinement: str = "integral",
        integral_patch_size: int = 5,
        batch_size: int = 4,
        max_instances: Optional[int] = None,
        return_confmaps: bool = False,
        device: str = "cpu",
        preprocess_config: Optional[OmegaConf] = None,
        max_stride: int = 16,
    ) -> "BottomUpMultiClassPredictor":
        """Create predictor from saved models.

        Args:
            bottomup_ckpt_path: Path to a multi-class bottom-up ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
            backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
                from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
            head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                    are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                    from `backbone_ckpt_path` if provided.)
            peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2
            integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
                If `"integral"`, peaks will be refined with integral regression.
                Default: "integral".
            integral_patch_size: (int) Size of patches to crop around each rough peak as an
                integer scalar. Default: 5.
            batch_size: (int) Number of samples per batch. Default: 4.
            max_instances: (int) Max number of instances to consider from the predictions.
            return_confmaps: (bool) If `True`, predicted confidence maps will be returned
                along with the predicted peak values and points. Default: False.
            device: (str) Device on which torch.Tensor will be allocated. One of the
                ("cpu", "cuda", "mps").
                Default: "cpu"
            preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
            max_stride: The maximum stride of the backbone network, as specified in the model's
                `backbone_config`. This determines the downsampling factor applied by the backbone,
                and is used to ensure that input images are padded or resized to be compatible
                with the model's architecture. Default: 16.

        Returns:
            An instance of `BottomUpPredictor` with the loaded models.

        """
        is_sleap_ckpt = False
        if (
            Path(bottomup_ckpt_path) / "training_config.yaml"
            in Path(bottomup_ckpt_path).iterdir()
        ):
            bottomup_config = OmegaConf.load(
                (Path(bottomup_ckpt_path) / "training_config.yaml").as_posix()
            )
        elif (
            Path(bottomup_ckpt_path) / "training_config.json"
            in Path(bottomup_ckpt_path).iterdir()
        ):
            is_sleap_ckpt = True
            bottomup_config = TrainingJobConfig.load_sleap_config(
                (Path(bottomup_ckpt_path) / "training_config.json").as_posix()
            )

        # check which backbone architecture
        for k, v in bottomup_config.model_config.backbone_config.items():
            if v is not None:
                backbone_type = k
                break

        if not is_sleap_ckpt:
            ckpt_path = (Path(bottomup_ckpt_path) / "best.ckpt").as_posix()

            bottomup_model = BottomUpMultiClassLightningModule.load_from_checkpoint(
                checkpoint_path=ckpt_path,
                backbone_type=backbone_type,
                model_type="multi_class_bottomup",
                map_location=device,
                backbone_config=bottomup_config.model_config.backbone_config,
                head_configs=bottomup_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=bottomup_config.model_config.init_weights,
                lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
                online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=bottomup_config.trainer_config.optimizer_name,
                learning_rate=bottomup_config.trainer_config.optimizer.lr,
                amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
            )
        else:
            bottomup_converted_model = load_legacy_model(
                model_dir=f"{bottomup_ckpt_path}"
            )
            bottomup_model = BottomUpMultiClassLightningModule(
                backbone_type=backbone_type,
                model_type="multi_class_bottomup",
                backbone_config=bottomup_config.model_config.backbone_config,
                head_configs=bottomup_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=bottomup_config.model_config.init_weights,
                lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
                online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=bottomup_config.trainer_config.optimizer_name,
                learning_rate=bottomup_config.trainer_config.optimizer.lr,
                amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
            )
            bottomup_model.eval()
            bottomup_model.model = bottomup_converted_model
            bottomup_model.to(device)

        bottomup_model.eval()
        skeletons = get_skeleton_from_config(bottomup_config.data_config.skeletons)

        if backbone_ckpt_path is not None and head_ckpt_path is not None:
            logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".backbone" in k
            }
            bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

        elif backbone_ckpt_path is not None:
            logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

        if head_ckpt_path is not None:
            logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
            ckpt = torch.load(
                head_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".head_layers" in k
            }
            bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)
        bottomup_model.to(device)

        for k, v in preprocess_config.items():
            if v is None:
                preprocess_config[k] = (
                    bottomup_config.data_config.preprocessing[k]
                    if k in bottomup_config.data_config.preprocessing
                    else None
                )

        # create an instance of SingleInstancePredictor class
        obj = cls(
            bottomup_config=bottomup_config,
            backbone_type=backbone_type,
            bottomup_model=bottomup_model,
            skeletons=skeletons,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            max_instances=max_instances,
            return_confmaps=return_confmaps,
            preprocess_config=preprocess_config,
            max_stride=bottomup_config.model_config.backbone_config[f"{backbone_type}"][
                "max_stride"
            ],
        )

        obj._initialize_inference_model()
        return obj

    def make_pipeline(
        self,
        inference_object: Union[str, Path, sio.Labels, sio.Video],
        queue_maxsize: int = 8,
        frames: Optional[list] = None,
        only_labeled_frames: bool = False,
        only_suggested_frames: bool = False,
        video_index: Optional[int] = None,
        video_dataset: Optional[str] = None,
        video_input_format: str = "channels_last",
    ):
        """Make a data loading pipeline.

        Args:
            inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
            queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
            frames: List of frames indices. If `None`, all frames in the video are used. Default: None.
            only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
            only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
            video_index: (int) Integer index of video in .slp file to predict on. To be used
                with an .slp path as an alternative to specifying the video path.
            video_dataset: (str) The dataset for HDF5 videos.
            video_input_format: (str) The input_format for HDF5 videos.

        Returns:
            This method initiates the reader class (doesn't return a pipeline) and the
            Thread is started in Predictor._predict_generator() method.
        """
        if isinstance(inference_object, str) or isinstance(inference_object, Path):
            inference_object = (
                sio.load_slp(inference_object)
                if inference_object.endswith(".slp")
                else sio.load_video(
                    inference_object,
                    dataset=video_dataset,
                    input_format=video_input_format,
                )
            )

        self.preprocess = True
        # LabelsReader provider
        if isinstance(inference_object, sio.Labels) and video_index is None:
            provider = LabelsReader
            max_stride = self.bottomup_config.model_config.backbone_config[
                f"{self.backbone_type}"
            ]["max_stride"]

            frame_buffer = Queue(maxsize=queue_maxsize)

            self.pipeline = provider(
                labels=inference_object,
                frame_buffer=frame_buffer,
                only_labeled_frames=only_labeled_frames,
                only_suggested_frames=only_suggested_frames,
            )

            self.videos = self.pipeline.labels.videos

        else:
            provider = VideoReader

            if isinstance(inference_object, sio.Labels) and video_index is not None:
                labels = inference_object
                self.pipeline = provider.from_video(
                    video=labels.videos[video_index],
                    queue_maxsize=queue_maxsize,
                    frames=frames,
                )

            else:  # for mp4 or hdf5 videos
                frame_buffer = Queue(maxsize=queue_maxsize)
                self.pipeline = provider(
                    video=inference_object,
                    frame_buffer=frame_buffer,
                    frames=frames,
                )

            self.videos = [self.pipeline.video]

    def _make_labeled_frames_from_generator(
        self,
        generator: Iterator[Dict[str, np.ndarray]],
    ) -> sio.Labels:
        """Create labeled frames from a generator that yields inference results.

        This method converts pure arrays into SLEAP-specific data structures and assigns
        tracks to the predicted instances if tracker is specified.

        Args:
            generator: A generator that returns dictionaries with inference results.
                This should return dictionaries with keys `"instance_image"`, `"video_idx"`,
                `"frame_idx"`, `"pred_instance_peaks"`, `"pred_peak_values"`, and
                `"centroid_val"`. This can be created using the `_predict_generator()`
                method.

        Returns:
            A `sio.Labels` object with `sio.PredictedInstance`s created from
            arrays returned from the inference result generator.
        """
        # open video backend for tracking
        for video in self.videos:
            if not video.open_backend:
                video.open()

        predicted_frames = []
        tracks = [
            sio.Track(name=x)
            for x in self.bottomup_config.model_config.head_configs.multi_class_bottomup.class_maps.classes
        ]

        skeleton_idx = 0
        for ex in generator:
            # loop through each sample in a batch
            for (
                video_idx,
                frame_idx,
                pred_instances,
                pred_values,
                instance_score,
            ) in zip(
                ex["video_idx"],
                ex["frame_idx"],
                ex["pred_instance_peaks"],
                ex["pred_peak_values"],
                ex["instance_scores"],
            ):

                # Loop over instances.
                predicted_instances = []
                for i, (pts, confs, score) in enumerate(
                    zip(pred_instances, pred_values, instance_score)
                ):
                    if np.isnan(pts).all():
                        continue

                    track = None
                    if tracks is not None and len(tracks) >= (i - 1):
                        track = tracks[i]

                    predicted_instances.append(
                        sio.PredictedInstance.from_numpy(
                            points_data=pts,
                            point_scores=confs,
                            score=np.nanmean(confs),
                            skeleton=self.skeletons[skeleton_idx],
                            track=track,
                            tracking_score=np.nanmean(score),
                        )
                    )

                max_instances = (
                    self.max_instances if self.max_instances is not None else None
                )
                if max_instances is not None:
                    # Filter by score.
                    predicted_instances = sorted(
                        predicted_instances, key=lambda x: x.score, reverse=True
                    )
                    predicted_instances = predicted_instances[
                        : min(max_instances, len(predicted_instances))
                    ]

                lf = sio.LabeledFrame(
                    video=self.videos[video_idx],
                    frame_idx=frame_idx,
                    instances=predicted_instances,
                )

                predicted_frames.append(lf)

        pred_labels = sio.Labels(
            videos=self.videos,
            skeletons=self.skeletons,
            labeled_frames=predicted_frames,
        )
        return pred_labels

from_trained_models(bottomup_ckpt_path=None, backbone_ckpt_path=None, head_ckpt_path=None, peak_threshold=0.2, integral_refinement='integral', integral_patch_size=5, batch_size=4, max_instances=None, return_confmaps=False, device='cpu', preprocess_config=None, max_stride=16) classmethod

Create predictor from saved models.

Parameters:

Name Type Description Default
bottomup_ckpt_path Optional[Text]

Path to a multi-class bottom-up ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).

None
backbone_ckpt_path Optional[str]

(str) To run inference on any .ckpt other than best.ckpt from the model_paths dir, the path to the .ckpt file should be passed here.

None
head_ckpt_path Optional[str]

(str) Path to .ckpt file if a different set of head layer weights are to be used. If None, the best.ckpt from model_paths dir is used (or the ckpt from backbone_ckpt_path if provided.)

None
peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

0.2
integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

'integral'
integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

5
batch_size int

(int) Number of samples per batch. Default: 4.

4
max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

None
return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

False
device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

'cpu'
preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

None
max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

16

Returns:

Type Description
BottomUpMultiClassPredictor

An instance of BottomUpPredictor with the loaded models.

Source code in sleap_nn/inference/predictors.py
@classmethod
def from_trained_models(
    cls,
    bottomup_ckpt_path: Optional[Text] = None,
    backbone_ckpt_path: Optional[str] = None,
    head_ckpt_path: Optional[str] = None,
    peak_threshold: float = 0.2,
    integral_refinement: str = "integral",
    integral_patch_size: int = 5,
    batch_size: int = 4,
    max_instances: Optional[int] = None,
    return_confmaps: bool = False,
    device: str = "cpu",
    preprocess_config: Optional[OmegaConf] = None,
    max_stride: int = 16,
) -> "BottomUpMultiClassPredictor":
    """Create predictor from saved models.

    Args:
        bottomup_ckpt_path: Path to a multi-class bottom-up ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
        backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
            from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
        head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                from `backbone_ckpt_path` if provided.)
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    Returns:
        An instance of `BottomUpPredictor` with the loaded models.

    """
    is_sleap_ckpt = False
    if (
        Path(bottomup_ckpt_path) / "training_config.yaml"
        in Path(bottomup_ckpt_path).iterdir()
    ):
        bottomup_config = OmegaConf.load(
            (Path(bottomup_ckpt_path) / "training_config.yaml").as_posix()
        )
    elif (
        Path(bottomup_ckpt_path) / "training_config.json"
        in Path(bottomup_ckpt_path).iterdir()
    ):
        is_sleap_ckpt = True
        bottomup_config = TrainingJobConfig.load_sleap_config(
            (Path(bottomup_ckpt_path) / "training_config.json").as_posix()
        )

    # check which backbone architecture
    for k, v in bottomup_config.model_config.backbone_config.items():
        if v is not None:
            backbone_type = k
            break

    if not is_sleap_ckpt:
        ckpt_path = (Path(bottomup_ckpt_path) / "best.ckpt").as_posix()

        bottomup_model = BottomUpMultiClassLightningModule.load_from_checkpoint(
            checkpoint_path=ckpt_path,
            backbone_type=backbone_type,
            model_type="multi_class_bottomup",
            map_location=device,
            backbone_config=bottomup_config.model_config.backbone_config,
            head_configs=bottomup_config.model_config.head_configs,
            pretrained_backbone_weights=None,
            pretrained_head_weights=None,
            init_weights=bottomup_config.model_config.init_weights,
            lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
            online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
            hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
            min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
            max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
            loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
            optimizer=bottomup_config.trainer_config.optimizer_name,
            learning_rate=bottomup_config.trainer_config.optimizer.lr,
            amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
        )
    else:
        bottomup_converted_model = load_legacy_model(
            model_dir=f"{bottomup_ckpt_path}"
        )
        bottomup_model = BottomUpMultiClassLightningModule(
            backbone_type=backbone_type,
            model_type="multi_class_bottomup",
            backbone_config=bottomup_config.model_config.backbone_config,
            head_configs=bottomup_config.model_config.head_configs,
            pretrained_backbone_weights=None,
            pretrained_head_weights=None,
            init_weights=bottomup_config.model_config.init_weights,
            lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
            online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
            hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
            min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
            max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
            loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
            optimizer=bottomup_config.trainer_config.optimizer_name,
            learning_rate=bottomup_config.trainer_config.optimizer.lr,
            amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
        )
        bottomup_model.eval()
        bottomup_model.model = bottomup_converted_model
        bottomup_model.to(device)

    bottomup_model.eval()
    skeletons = get_skeleton_from_config(bottomup_config.data_config.skeletons)

    if backbone_ckpt_path is not None and head_ckpt_path is not None:
        logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
        ckpt = torch.load(
            backbone_ckpt_path,
            map_location=device,
            weights_only=False,
        )
        ckpt["state_dict"] = {
            k: ckpt["state_dict"][k]
            for k in ckpt["state_dict"].keys()
            if ".backbone" in k
        }
        bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

    elif backbone_ckpt_path is not None:
        logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
        ckpt = torch.load(
            backbone_ckpt_path,
            map_location=device,
            weights_only=False,
        )
        bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

    if head_ckpt_path is not None:
        logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
        ckpt = torch.load(
            head_ckpt_path,
            map_location=device,
            weights_only=False,
        )
        ckpt["state_dict"] = {
            k: ckpt["state_dict"][k]
            for k in ckpt["state_dict"].keys()
            if ".head_layers" in k
        }
        bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)
    bottomup_model.to(device)

    for k, v in preprocess_config.items():
        if v is None:
            preprocess_config[k] = (
                bottomup_config.data_config.preprocessing[k]
                if k in bottomup_config.data_config.preprocessing
                else None
            )

    # create an instance of SingleInstancePredictor class
    obj = cls(
        bottomup_config=bottomup_config,
        backbone_type=backbone_type,
        bottomup_model=bottomup_model,
        skeletons=skeletons,
        peak_threshold=peak_threshold,
        integral_refinement=integral_refinement,
        integral_patch_size=integral_patch_size,
        batch_size=batch_size,
        max_instances=max_instances,
        return_confmaps=return_confmaps,
        preprocess_config=preprocess_config,
        max_stride=bottomup_config.model_config.backbone_config[f"{backbone_type}"][
            "max_stride"
        ],
    )

    obj._initialize_inference_model()
    return obj

make_pipeline(inference_object, queue_maxsize=8, frames=None, only_labeled_frames=False, only_suggested_frames=False, video_index=None, video_dataset=None, video_input_format='channels_last')

Make a data loading pipeline.

Parameters:

Name Type Description Default
inference_object Union[str, Path, Labels, Video]

(str) Path to .slp file or .mp4 or sio.Labels or sio.Video to run inference on.

required
queue_maxsize int

(int) Maximum size of the frame buffer queue. Default: 8.

8
frames Optional[list]

List of frames indices. If None, all frames in the video are used. Default: None.

None
only_labeled_frames bool

(bool) True if inference should be run only on user-labeled frames. Default: False.

False
only_suggested_frames bool

(bool) True if inference should be run only on unlabeled suggested frames. Default: False.

False
video_index Optional[int]

(int) Integer index of video in .slp file to predict on. To be used with an .slp path as an alternative to specifying the video path.

None
video_dataset Optional[str]

(str) The dataset for HDF5 videos.

None
video_input_format str

(str) The input_format for HDF5 videos.

'channels_last'

Returns:

Type Description

This method initiates the reader class (doesn't return a pipeline) and the Thread is started in Predictor._predict_generator() method.

Source code in sleap_nn/inference/predictors.py
def make_pipeline(
    self,
    inference_object: Union[str, Path, sio.Labels, sio.Video],
    queue_maxsize: int = 8,
    frames: Optional[list] = None,
    only_labeled_frames: bool = False,
    only_suggested_frames: bool = False,
    video_index: Optional[int] = None,
    video_dataset: Optional[str] = None,
    video_input_format: str = "channels_last",
):
    """Make a data loading pipeline.

    Args:
        inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
        queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
        frames: List of frames indices. If `None`, all frames in the video are used. Default: None.
        only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
        only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
        video_index: (int) Integer index of video in .slp file to predict on. To be used
            with an .slp path as an alternative to specifying the video path.
        video_dataset: (str) The dataset for HDF5 videos.
        video_input_format: (str) The input_format for HDF5 videos.

    Returns:
        This method initiates the reader class (doesn't return a pipeline) and the
        Thread is started in Predictor._predict_generator() method.
    """
    if isinstance(inference_object, str) or isinstance(inference_object, Path):
        inference_object = (
            sio.load_slp(inference_object)
            if inference_object.endswith(".slp")
            else sio.load_video(
                inference_object,
                dataset=video_dataset,
                input_format=video_input_format,
            )
        )

    self.preprocess = True
    # LabelsReader provider
    if isinstance(inference_object, sio.Labels) and video_index is None:
        provider = LabelsReader
        max_stride = self.bottomup_config.model_config.backbone_config[
            f"{self.backbone_type}"
        ]["max_stride"]

        frame_buffer = Queue(maxsize=queue_maxsize)

        self.pipeline = provider(
            labels=inference_object,
            frame_buffer=frame_buffer,
            only_labeled_frames=only_labeled_frames,
            only_suggested_frames=only_suggested_frames,
        )

        self.videos = self.pipeline.labels.videos

    else:
        provider = VideoReader

        if isinstance(inference_object, sio.Labels) and video_index is not None:
            labels = inference_object
            self.pipeline = provider.from_video(
                video=labels.videos[video_index],
                queue_maxsize=queue_maxsize,
                frames=frames,
            )

        else:  # for mp4 or hdf5 videos
            frame_buffer = Queue(maxsize=queue_maxsize)
            self.pipeline = provider(
                video=inference_object,
                frame_buffer=frame_buffer,
                frames=frames,
            )

        self.videos = [self.pipeline.video]

BottomUpPredictor

Bases: Predictor

BottomUp model predictor.

This high-level class handles initialization, preprocessing and predicting using a trained BottomUp SLEAP-NN model.

This should be initialized using the from_trained_models() constructor.

Attributes:

Name Type Description
bottomup_config Optional[OmegaConf]

A OmegaConfig dictionary with the configs used for training the bottom-up model.

bottomup_model Optional[LightningModule]

A LightningModule instance created from the trained weights for bottom-up model.

backbone_type str

Backbone model. One of unet, convnext and swint.

max_edge_length_ratio float

The maximum expected length of a connected pair of points as a fraction of the image size. Candidate connections longer than this length will be penalized during matching.

dist_penalty_weight float

A coefficient to scale weight of the distance penalty as a scalar float. Set to values greater than 1.0 to enforce the distance penalty more strictly.

n_points int

Number of points to sample along the line integral.

min_instance_peaks Union[int, float]

Minimum number of peaks the instance should have to be considered a real instance. Instances with fewer peaks than this will be discarded (useful for filtering spurious detections).

min_line_scores float

Minimum line score (between -1 and 1) required to form a match between candidate point pairs. Useful for rejecting spurious detections when there are no better ones.

videos Optional[List[Video]]

List of sio.Video objects for creating the sio.Labels object from the output predictions.

skeletons Optional[List[Skeleton]]

List of sio.Skeleton objects for creating sio.Labels object from the output predictions.

peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

batch_size int

(int) Number of samples per batch. Default: 4.

max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu".

preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

tracker Optional[Tracker]

A sleap.nn.tracking.Tracker that will be called to associate detections over time. Predicted instances will not be assigned to tracks if if this is None.

max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

Methods:

Name Description
from_trained_models

Create predictor from saved models.

make_pipeline

Make a data loading pipeline.

Source code in sleap_nn/inference/predictors.py
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
@attrs.define
class BottomUpPredictor(Predictor):
    """BottomUp model predictor.

    This high-level class handles initialization, preprocessing and predicting using a
    trained BottomUp SLEAP-NN model.

    This should be initialized using the `from_trained_models()` constructor.

    Attributes:
        bottomup_config: A OmegaConfig dictionary with the configs used for training the
                        bottom-up model.
        bottomup_model: A LightningModule instance created from the trained weights for
                       bottom-up model.
        backbone_type: Backbone model. One of `unet`, `convnext` and `swint`.
        max_edge_length_ratio: The maximum expected length of a connected pair of points
            as a fraction of the image size. Candidate connections longer than this
            length will be penalized during matching.
        dist_penalty_weight: A coefficient to scale weight of the distance penalty as
            a scalar float. Set to values greater than 1.0 to enforce the distance
            penalty more strictly.
        n_points: Number of points to sample along the line integral.
        min_instance_peaks: Minimum number of peaks the instance should have to be
                considered a real instance. Instances with fewer peaks than this will be
                discarded (useful for filtering spurious detections).
        min_line_scores: Minimum line score (between -1 and 1) required to form a match
            between candidate point pairs. Useful for rejecting spurious detections when
            there are no better ones.
        videos: List of `sio.Video` objects for creating the `sio.Labels` object from
                        the output predictions.
        skeletons: List of `sio.Skeleton` objects for creating `sio.Labels` object from
                        the output predictions.
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu".
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
        tracker: A `sleap.nn.tracking.Tracker` that will be called to associate
            detections over time. Predicted instances will not be assigned to tracks if
            if this is `None`.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    """

    bottomup_config: Optional[OmegaConf] = attrs.field(default=None)
    bottomup_model: Optional[L.LightningModule] = attrs.field(default=None)
    backbone_type: str = "unet"
    max_edge_length_ratio: float = 0.25
    dist_penalty_weight: float = 1.0
    n_points: int = 10
    min_instance_peaks: Union[int, float] = 0
    min_line_scores: float = 0.25
    videos: Optional[List[sio.Video]] = attrs.field(default=None)
    skeletons: Optional[List[sio.Skeleton]] = attrs.field(default=None)
    peak_threshold: float = 0.2
    integral_refinement: str = "integral"
    integral_patch_size: int = 5
    batch_size: int = 4
    max_instances: Optional[int] = None
    return_confmaps: bool = False
    device: str = "cpu"
    preprocess_config: Optional[OmegaConf] = None
    tracker: Optional[Tracker] = None
    max_stride: int = 16

    def _initialize_inference_model(self):
        """Initialize the inference model from the trained models and configuration."""
        # initialize the paf scorer
        paf_scorer = PAFScorer.from_config(
            config=OmegaConf.create(
                {
                    "confmaps": self.bottomup_config.model_config.head_configs.bottomup[
                        "confmaps"
                    ],
                    "pafs": self.bottomup_config.model_config.head_configs.bottomup[
                        "pafs"
                    ],
                }
            ),
            max_edge_length_ratio=self.max_edge_length_ratio,
            dist_penalty_weight=self.dist_penalty_weight,
            n_points=self.n_points,
            min_instance_peaks=self.min_instance_peaks,
            min_line_scores=self.min_line_scores,
        )

        # initialize the BottomUpInferenceModel
        self.inference_model = BottomUpInferenceModel(
            torch_model=self.bottomup_model,
            paf_scorer=paf_scorer,
            peak_threshold=self.peak_threshold,
            cms_output_stride=self.bottomup_config.model_config.head_configs.bottomup.confmaps.output_stride,
            pafs_output_stride=self.bottomup_config.model_config.head_configs.bottomup.pafs.output_stride,
            refinement=self.integral_refinement,
            integral_patch_size=self.integral_patch_size,
            return_confmaps=self.return_confmaps,
            input_scale=self.bottomup_config.data_config.preprocessing.scale,
        )

    @classmethod
    def from_trained_models(
        cls,
        bottomup_ckpt_path: Optional[Text] = None,
        backbone_ckpt_path: Optional[str] = None,
        head_ckpt_path: Optional[str] = None,
        peak_threshold: float = 0.2,
        integral_refinement: str = "integral",
        integral_patch_size: int = 5,
        batch_size: int = 4,
        max_instances: Optional[int] = None,
        return_confmaps: bool = False,
        device: str = "cpu",
        preprocess_config: Optional[OmegaConf] = None,
        max_stride: int = 16,
    ) -> "BottomUpPredictor":
        """Create predictor from saved models.

        Args:
            bottomup_ckpt_path: Path to a bottom-up ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
            backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
                from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
            head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                    are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                    from `backbone_ckpt_path` if provided.)
            peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2
            integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
                If `"integral"`, peaks will be refined with integral regression.
                Default: "integral".
            integral_patch_size: (int) Size of patches to crop around each rough peak as an
                integer scalar. Default: 5.
            batch_size: (int) Number of samples per batch. Default: 4.
            max_instances: (int) Max number of instances to consider from the predictions.
            return_confmaps: (bool) If `True`, predicted confidence maps will be returned
                along with the predicted peak values and points. Default: False.
            device: (str) Device on which torch.Tensor will be allocated. One of the
                ("cpu", "cuda", "mps").
                Default: "cpu"
            preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
            max_stride: The maximum stride of the backbone network, as specified in the model's
                `backbone_config`. This determines the downsampling factor applied by the backbone,
                and is used to ensure that input images are padded or resized to be compatible
                with the model's architecture. Default: 16.

        Returns:
            An instance of `BottomUpPredictor` with the loaded models.

        """
        is_sleap_ckpt = False
        if (
            Path(bottomup_ckpt_path) / "training_config.yaml"
            in Path(bottomup_ckpt_path).iterdir()
        ):
            bottomup_config = OmegaConf.load(
                (Path(bottomup_ckpt_path) / "training_config.yaml").as_posix()
            )
        elif (
            Path(bottomup_ckpt_path) / "training_config.json"
            in Path(bottomup_ckpt_path).iterdir()
        ):
            is_sleap_ckpt = True
            bottomup_config = TrainingJobConfig.load_sleap_config(
                (Path(bottomup_ckpt_path) / "training_config.json").as_posix()
            )

        # check which backbone architecture
        for k, v in bottomup_config.model_config.backbone_config.items():
            if v is not None:
                backbone_type = k
                break

        if not is_sleap_ckpt:
            ckpt_path = (Path(bottomup_ckpt_path) / "best.ckpt").as_posix()

            bottomup_model = BottomUpLightningModule.load_from_checkpoint(
                checkpoint_path=ckpt_path,
                backbone_config=bottomup_config.model_config.backbone_config,
                head_configs=bottomup_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=bottomup_config.model_config.init_weights,
                lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
                online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=bottomup_config.trainer_config.optimizer_name,
                learning_rate=bottomup_config.trainer_config.optimizer.lr,
                amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
                backbone_type=backbone_type,
                model_type="bottomup",
                map_location=device,
            )
        else:
            bottomup_converted_model = load_legacy_model(
                model_dir=f"{bottomup_ckpt_path}"
            )
            bottomup_model = BottomUpLightningModule(
                backbone_config=bottomup_config.model_config.backbone_config,
                head_configs=bottomup_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=bottomup_config.model_config.init_weights,
                lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
                backbone_type=backbone_type,
                model_type="bottomup",
                online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=bottomup_config.trainer_config.optimizer_name,
                learning_rate=bottomup_config.trainer_config.optimizer.lr,
                amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
            )
            bottomup_model.eval()
            bottomup_model.model = bottomup_converted_model
            bottomup_model.to(device)

        bottomup_model.eval()
        skeletons = get_skeleton_from_config(bottomup_config.data_config.skeletons)

        if backbone_ckpt_path is not None and head_ckpt_path is not None:
            logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".backbone" in k
            }
            bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

        elif backbone_ckpt_path is not None:
            logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

        if head_ckpt_path is not None:
            logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
            ckpt = torch.load(head_ckpt_path, map_location=device, weights_only=False)
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".head_layers" in k
            }
            bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)
        bottomup_model.to(device)

        for k, v in preprocess_config.items():
            if v is None:
                preprocess_config[k] = (
                    bottomup_config.data_config.preprocessing[k]
                    if k in bottomup_config.data_config.preprocessing
                    else None
                )

        # create an instance of BottomUpPredictor class
        obj = cls(
            bottomup_config=bottomup_config,
            backbone_type=backbone_type,
            bottomup_model=bottomup_model,
            skeletons=skeletons,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            max_instances=max_instances,
            return_confmaps=return_confmaps,
            preprocess_config=preprocess_config,
            max_stride=bottomup_config.model_config.backbone_config[f"{backbone_type}"][
                "max_stride"
            ],
        )

        obj._initialize_inference_model()
        return obj

    def make_pipeline(
        self,
        inference_object: Union[str, Path, sio.Labels, sio.Video],
        queue_maxsize: int = 8,
        frames: Optional[list] = None,
        only_labeled_frames: bool = False,
        only_suggested_frames: bool = False,
        video_index: Optional[int] = None,
        video_dataset: Optional[str] = None,
        video_input_format: str = "channels_last",
    ):
        """Make a data loading pipeline.

        Args:
            inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
            queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
            frames: List of frames indices. If `None`, all frames in the video are used. Default: None.
            only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
            only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
            video_index: (int) Integer index of video in .slp file to predict on. To be used
                with an .slp path as an alternative to specifying the video path.
            video_dataset: (str) The dataset for HDF5 videos.
            video_input_format: (str) The input_format for HDF5 videos.

        Returns:
            This method initiates the reader class (doesn't return a pipeline) and the
            Thread is started in Predictor._predict_generator() method.
        """
        if isinstance(inference_object, str) or isinstance(inference_object, Path):
            inference_object = (
                sio.load_slp(inference_object)
                if inference_object.endswith(".slp")
                else sio.load_video(
                    inference_object,
                    dataset=video_dataset,
                    input_format=video_input_format,
                )
            )

        self.preprocess = True

        # LabelsReader provider
        if isinstance(inference_object, sio.Labels) and video_index is None:
            provider = LabelsReader

            frame_buffer = Queue(maxsize=queue_maxsize)

            self.pipeline = provider(
                labels=inference_object,
                frame_buffer=frame_buffer,
                only_labeled_frames=only_labeled_frames,
                only_suggested_frames=only_suggested_frames,
            )

            self.videos = self.pipeline.labels.videos

        else:
            provider = VideoReader

            if isinstance(inference_object, sio.Labels) and video_index is not None:
                labels = inference_object
                self.pipeline = provider.from_video(
                    video=labels.videos[video_index],
                    queue_maxsize=queue_maxsize,
                    frames=frames,
                )

            else:  # for mp4 or hdf5 videos
                frame_buffer = Queue(maxsize=queue_maxsize)
                self.pipeline = provider(
                    video=inference_object,
                    frame_buffer=frame_buffer,
                    frames=frames,
                )

            self.videos = [self.pipeline.video]

    def _make_labeled_frames_from_generator(
        self,
        generator: Iterator[Dict[str, np.ndarray]],
    ) -> sio.Labels:
        """Create labeled frames from a generator that yields inference results.

        This method converts pure arrays into SLEAP-specific data structures and assigns
        tracks to the predicted instances if tracker is specified.

        Args:
            generator: A generator that returns dictionaries with inference results.
                This should return dictionaries with keys `"instance_image"`, `"video_idx"`,
                `"frame_idx"`, `"pred_instance_peaks"`, `"pred_peak_values"`, and
                `"centroid_val"`. This can be created using the `_predict_generator()`
                method.

        Returns:
            A `sio.Labels` object with `sio.PredictedInstance`s created from
            arrays returned from the inference result generator.
        """
        # open video backend for tracking
        for video in self.videos:
            if not video.open_backend:
                video.open()

        predicted_frames = []

        skeleton_idx = 0
        for ex in generator:
            # loop through each sample in a batch
            for (
                video_idx,
                frame_idx,
                pred_instances,
                pred_values,
                instance_score,
            ) in zip(
                ex["video_idx"],
                ex["frame_idx"],
                ex["pred_instance_peaks"],
                ex["pred_peak_values"],
                ex["instance_scores"],
            ):

                # Loop over instances.
                predicted_instances = []
                for pts, confs, score in zip(
                    pred_instances, pred_values, instance_score
                ):
                    if np.isnan(pts).all():
                        continue

                    predicted_instances.append(
                        sio.PredictedInstance.from_numpy(
                            points_data=pts,
                            point_scores=confs,
                            score=score,
                            skeleton=self.skeletons[skeleton_idx],
                        )
                    )

                max_instances = (
                    self.max_instances if self.max_instances is not None else None
                )
                if max_instances is not None:
                    # Filter by score.
                    predicted_instances = sorted(
                        predicted_instances, key=lambda x: x.score, reverse=True
                    )
                    predicted_instances = predicted_instances[
                        : min(max_instances, len(predicted_instances))
                    ]

                lf = sio.LabeledFrame(
                    video=self.videos[video_idx],
                    frame_idx=frame_idx,
                    instances=predicted_instances,
                )

                if self.tracker:
                    lf.instances = self.tracker.track(
                        untracked_instances=predicted_instances,
                        frame_idx=frame_idx,
                        image=lf.image,
                    )

                predicted_frames.append(lf)

        pred_labels = sio.Labels(
            videos=self.videos,
            skeletons=self.skeletons,
            labeled_frames=predicted_frames,
        )
        return pred_labels

from_trained_models(bottomup_ckpt_path=None, backbone_ckpt_path=None, head_ckpt_path=None, peak_threshold=0.2, integral_refinement='integral', integral_patch_size=5, batch_size=4, max_instances=None, return_confmaps=False, device='cpu', preprocess_config=None, max_stride=16) classmethod

Create predictor from saved models.

Parameters:

Name Type Description Default
bottomup_ckpt_path Optional[Text]

Path to a bottom-up ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).

None
backbone_ckpt_path Optional[str]

(str) To run inference on any .ckpt other than best.ckpt from the model_paths dir, the path to the .ckpt file should be passed here.

None
head_ckpt_path Optional[str]

(str) Path to .ckpt file if a different set of head layer weights are to be used. If None, the best.ckpt from model_paths dir is used (or the ckpt from backbone_ckpt_path if provided.)

None
peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

0.2
integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

'integral'
integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

5
batch_size int

(int) Number of samples per batch. Default: 4.

4
max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

None
return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

False
device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

'cpu'
preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

None
max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

16

Returns:

Type Description
BottomUpPredictor

An instance of BottomUpPredictor with the loaded models.

Source code in sleap_nn/inference/predictors.py
@classmethod
def from_trained_models(
    cls,
    bottomup_ckpt_path: Optional[Text] = None,
    backbone_ckpt_path: Optional[str] = None,
    head_ckpt_path: Optional[str] = None,
    peak_threshold: float = 0.2,
    integral_refinement: str = "integral",
    integral_patch_size: int = 5,
    batch_size: int = 4,
    max_instances: Optional[int] = None,
    return_confmaps: bool = False,
    device: str = "cpu",
    preprocess_config: Optional[OmegaConf] = None,
    max_stride: int = 16,
) -> "BottomUpPredictor":
    """Create predictor from saved models.

    Args:
        bottomup_ckpt_path: Path to a bottom-up ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
        backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
            from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
        head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                from `backbone_ckpt_path` if provided.)
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    Returns:
        An instance of `BottomUpPredictor` with the loaded models.

    """
    is_sleap_ckpt = False
    if (
        Path(bottomup_ckpt_path) / "training_config.yaml"
        in Path(bottomup_ckpt_path).iterdir()
    ):
        bottomup_config = OmegaConf.load(
            (Path(bottomup_ckpt_path) / "training_config.yaml").as_posix()
        )
    elif (
        Path(bottomup_ckpt_path) / "training_config.json"
        in Path(bottomup_ckpt_path).iterdir()
    ):
        is_sleap_ckpt = True
        bottomup_config = TrainingJobConfig.load_sleap_config(
            (Path(bottomup_ckpt_path) / "training_config.json").as_posix()
        )

    # check which backbone architecture
    for k, v in bottomup_config.model_config.backbone_config.items():
        if v is not None:
            backbone_type = k
            break

    if not is_sleap_ckpt:
        ckpt_path = (Path(bottomup_ckpt_path) / "best.ckpt").as_posix()

        bottomup_model = BottomUpLightningModule.load_from_checkpoint(
            checkpoint_path=ckpt_path,
            backbone_config=bottomup_config.model_config.backbone_config,
            head_configs=bottomup_config.model_config.head_configs,
            pretrained_backbone_weights=None,
            pretrained_head_weights=None,
            init_weights=bottomup_config.model_config.init_weights,
            lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
            online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
            hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
            min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
            max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
            loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
            optimizer=bottomup_config.trainer_config.optimizer_name,
            learning_rate=bottomup_config.trainer_config.optimizer.lr,
            amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
            backbone_type=backbone_type,
            model_type="bottomup",
            map_location=device,
        )
    else:
        bottomup_converted_model = load_legacy_model(
            model_dir=f"{bottomup_ckpt_path}"
        )
        bottomup_model = BottomUpLightningModule(
            backbone_config=bottomup_config.model_config.backbone_config,
            head_configs=bottomup_config.model_config.head_configs,
            pretrained_backbone_weights=None,
            pretrained_head_weights=None,
            init_weights=bottomup_config.model_config.init_weights,
            lr_scheduler=bottomup_config.trainer_config.lr_scheduler,
            backbone_type=backbone_type,
            model_type="bottomup",
            online_mining=bottomup_config.trainer_config.online_hard_keypoint_mining.online_mining,
            hard_to_easy_ratio=bottomup_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
            min_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
            max_hard_keypoints=bottomup_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
            loss_scale=bottomup_config.trainer_config.online_hard_keypoint_mining.loss_scale,
            optimizer=bottomup_config.trainer_config.optimizer_name,
            learning_rate=bottomup_config.trainer_config.optimizer.lr,
            amsgrad=bottomup_config.trainer_config.optimizer.amsgrad,
        )
        bottomup_model.eval()
        bottomup_model.model = bottomup_converted_model
        bottomup_model.to(device)

    bottomup_model.eval()
    skeletons = get_skeleton_from_config(bottomup_config.data_config.skeletons)

    if backbone_ckpt_path is not None and head_ckpt_path is not None:
        logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
        ckpt = torch.load(
            backbone_ckpt_path, map_location=device, weights_only=False
        )
        ckpt["state_dict"] = {
            k: ckpt["state_dict"][k]
            for k in ckpt["state_dict"].keys()
            if ".backbone" in k
        }
        bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

    elif backbone_ckpt_path is not None:
        logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
        ckpt = torch.load(
            backbone_ckpt_path, map_location=device, weights_only=False
        )
        bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)

    if head_ckpt_path is not None:
        logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
        ckpt = torch.load(head_ckpt_path, map_location=device, weights_only=False)
        ckpt["state_dict"] = {
            k: ckpt["state_dict"][k]
            for k in ckpt["state_dict"].keys()
            if ".head_layers" in k
        }
        bottomup_model.load_state_dict(ckpt["state_dict"], strict=False)
    bottomup_model.to(device)

    for k, v in preprocess_config.items():
        if v is None:
            preprocess_config[k] = (
                bottomup_config.data_config.preprocessing[k]
                if k in bottomup_config.data_config.preprocessing
                else None
            )

    # create an instance of BottomUpPredictor class
    obj = cls(
        bottomup_config=bottomup_config,
        backbone_type=backbone_type,
        bottomup_model=bottomup_model,
        skeletons=skeletons,
        peak_threshold=peak_threshold,
        integral_refinement=integral_refinement,
        integral_patch_size=integral_patch_size,
        batch_size=batch_size,
        max_instances=max_instances,
        return_confmaps=return_confmaps,
        preprocess_config=preprocess_config,
        max_stride=bottomup_config.model_config.backbone_config[f"{backbone_type}"][
            "max_stride"
        ],
    )

    obj._initialize_inference_model()
    return obj

make_pipeline(inference_object, queue_maxsize=8, frames=None, only_labeled_frames=False, only_suggested_frames=False, video_index=None, video_dataset=None, video_input_format='channels_last')

Make a data loading pipeline.

Parameters:

Name Type Description Default
inference_object Union[str, Path, Labels, Video]

(str) Path to .slp file or .mp4 or sio.Labels or sio.Video to run inference on.

required
queue_maxsize int

(int) Maximum size of the frame buffer queue. Default: 8.

8
frames Optional[list]

List of frames indices. If None, all frames in the video are used. Default: None.

None
only_labeled_frames bool

(bool) True if inference should be run only on user-labeled frames. Default: False.

False
only_suggested_frames bool

(bool) True if inference should be run only on unlabeled suggested frames. Default: False.

False
video_index Optional[int]

(int) Integer index of video in .slp file to predict on. To be used with an .slp path as an alternative to specifying the video path.

None
video_dataset Optional[str]

(str) The dataset for HDF5 videos.

None
video_input_format str

(str) The input_format for HDF5 videos.

'channels_last'

Returns:

Type Description

This method initiates the reader class (doesn't return a pipeline) and the Thread is started in Predictor._predict_generator() method.

Source code in sleap_nn/inference/predictors.py
def make_pipeline(
    self,
    inference_object: Union[str, Path, sio.Labels, sio.Video],
    queue_maxsize: int = 8,
    frames: Optional[list] = None,
    only_labeled_frames: bool = False,
    only_suggested_frames: bool = False,
    video_index: Optional[int] = None,
    video_dataset: Optional[str] = None,
    video_input_format: str = "channels_last",
):
    """Make a data loading pipeline.

    Args:
        inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
        queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
        frames: List of frames indices. If `None`, all frames in the video are used. Default: None.
        only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
        only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
        video_index: (int) Integer index of video in .slp file to predict on. To be used
            with an .slp path as an alternative to specifying the video path.
        video_dataset: (str) The dataset for HDF5 videos.
        video_input_format: (str) The input_format for HDF5 videos.

    Returns:
        This method initiates the reader class (doesn't return a pipeline) and the
        Thread is started in Predictor._predict_generator() method.
    """
    if isinstance(inference_object, str) or isinstance(inference_object, Path):
        inference_object = (
            sio.load_slp(inference_object)
            if inference_object.endswith(".slp")
            else sio.load_video(
                inference_object,
                dataset=video_dataset,
                input_format=video_input_format,
            )
        )

    self.preprocess = True

    # LabelsReader provider
    if isinstance(inference_object, sio.Labels) and video_index is None:
        provider = LabelsReader

        frame_buffer = Queue(maxsize=queue_maxsize)

        self.pipeline = provider(
            labels=inference_object,
            frame_buffer=frame_buffer,
            only_labeled_frames=only_labeled_frames,
            only_suggested_frames=only_suggested_frames,
        )

        self.videos = self.pipeline.labels.videos

    else:
        provider = VideoReader

        if isinstance(inference_object, sio.Labels) and video_index is not None:
            labels = inference_object
            self.pipeline = provider.from_video(
                video=labels.videos[video_index],
                queue_maxsize=queue_maxsize,
                frames=frames,
            )

        else:  # for mp4 or hdf5 videos
            frame_buffer = Queue(maxsize=queue_maxsize)
            self.pipeline = provider(
                video=inference_object,
                frame_buffer=frame_buffer,
                frames=frames,
            )

        self.videos = [self.pipeline.video]

Predictor

Bases: ABC

Base interface class for predictors.

This is the base predictor class for different types of models.

Attributes:

Name Type Description
preprocess bool

True if preprocessing (resizing and apply_pad_to_stride) should be applied on the frames read in the video reader. Default: True.

preprocess_config dict

Preprocessing config with keys: [scale, ensure_rgb, ensure_grayscale, scale, max_height, max_width, crop_size]. Default: {"scale": 1.0, "ensure_rgb": False, "ensure_grayscale": False, "max_height": None, "max_width": None, "crop_size": None}

pipeline Optional[Union[LabelsReader, VideoReader]]

If provider is LabelsReader, pipeline is a DataLoader object. If provider is VideoReader, pipeline is an instance of sleap_nn.data.providers.VideoReader class. Default: None.

inference_model Optional[Union[TopDownInferenceModel, SingleInstanceInferenceModel, BottomUpInferenceModel]]

Instance of one of the inference models ["TopDownInferenceModel", "SingleInstanceInferenceModel", "BottomUpInferenceModel"]. Default: None.

instances_key bool

If True, then instances are appended to the data samples.

max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

Methods:

Name Description
from_model_paths

Create the appropriate Predictor subclass from from the ckpt path.

from_trained_models

Initialize the Predictor class for certain type of model.

make_pipeline

Create the data pipeline.

predict

Run inference on a data source.

Source code in sleap_nn/inference/predictors.py
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
@attrs.define
class Predictor(ABC):
    """Base interface class for predictors.

    This is the base predictor class for different types of models.

    Attributes:
        preprocess: True if preprocessing (resizing and
            apply_pad_to_stride) should be applied on the frames read in the video reader.
            Default: True.
        preprocess_config: Preprocessing config with keys: [`scale`,
            `ensure_rgb`, `ensure_grayscale`, `scale`, `max_height`, `max_width`, `crop_size`]. Default: {"scale": 1.0,
            "ensure_rgb": False, "ensure_grayscale": False, "max_height": None, "max_width": None, "crop_size": None}
        pipeline: If provider is LabelsReader, pipeline is a `DataLoader` object. If provider
            is VideoReader, pipeline is an instance of `sleap_nn.data.providers.VideoReader`
            class. Default: None.
        inference_model: Instance of one of the inference models ["TopDownInferenceModel",
            "SingleInstanceInferenceModel", "BottomUpInferenceModel"]. Default: None.
        instances_key: If `True`, then instances are appended to the data samples.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.
    """

    preprocess: bool = True
    preprocess_config: dict = {
        "scale": 1.0,
        "ensure_rgb": False,
        "ensure_grayscale": False,
        "crop_size": None,
        "max_height": None,
        "max_width": None,
    }
    pipeline: Optional[Union[LabelsReader, VideoReader]] = None
    inference_model: Optional[
        Union[
            TopDownInferenceModel, SingleInstanceInferenceModel, BottomUpInferenceModel
        ]
    ] = None
    instances_key: bool = False
    max_stride: int = 16

    @classmethod
    def from_model_paths(
        cls,
        model_paths: List[Text],
        backbone_ckpt_path: Optional[str] = None,
        head_ckpt_path: Optional[str] = None,
        peak_threshold: Union[float, List[float]] = 0.2,
        integral_refinement: str = "integral",
        integral_patch_size: int = 5,
        batch_size: int = 4,
        max_instances: Optional[int] = None,
        return_confmaps: bool = False,
        device: str = "cpu",
        preprocess_config: Optional[OmegaConf] = None,
        anchor_part: Optional[str] = None,
    ) -> "Predictor":
        """Create the appropriate `Predictor` subclass from from the ckpt path.

        Args:
            model_paths: (List[str]) List of paths to the directory where the best.ckpt (or from SLEAP <=1.4 best_model - only UNet backbone is supported)
                and training_config.yaml (or from SLEAP <=1.4 training_config.json) are saved.
            backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
                from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
            head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                from `backbone_ckpt_path` if provided.)
            peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2. This can also be `List[float]` for topdown
                centroid and centered-instance model, where the first element corresponds
                to centroid model peak finding threshold and the second element is for
                centered-instance model peak finding.
            integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
                If `"integral"`, peaks will be refined with integral regression.
                Default: "integral".
            integral_patch_size: (int) Size of patches to crop around each rough peak as an
                integer scalar. Default: 5.
            batch_size: (int) Number of samples per batch. Default: 4.
            max_instances: (int) Max number of instances to consider from the predictions.
            return_confmaps: (bool) If `True`, predicted confidence maps will be returned
                along with the predicted peak values and points. Default: False.
            device: (str) Device on which torch.Tensor will be allocated. One of the
                ("cpu", "cuda", "mps").
                Default: "cpu"
            preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
            anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
                provided, the anchor part in the `training_config.yaml` is used instead. Default: None.

        Returns:
            A subclass of `Predictor`.

        See also: `SingleInstancePredictor`, `TopDownPredictor`, `BottomUpPredictor`,
            `MoveNetPredictor`, `TopDownMultiClassPredictor`,
            `BottomUpMultiClassPredictor`.
        """
        model_configs = []
        for model_path in model_paths:
            path = Path(model_path)
            if path / "training_config.yaml" in path.iterdir():
                model_configs.append(
                    OmegaConf.load((path / "training_config.yaml").as_posix())
                )
            elif path / "training_config.json" in path.iterdir():
                model_configs.append(
                    TrainingJobConfig.load_sleap_config(
                        (path / "training_config.json").as_posix()
                    )
                )
            else:
                raise ValueError(
                    f"Could not find training_config.yaml or training_config.json in {model_path}"
                )

        model_names = []
        for config in model_configs:
            model_names.append(get_model_type_from_cfg(config=config))

        if "single_instance" in model_names:
            confmap_ckpt_path = model_paths[model_names.index("single_instance")]
            predictor = SingleInstancePredictor.from_trained_models(
                confmap_ckpt_path,
                backbone_ckpt_path=backbone_ckpt_path,
                head_ckpt_path=head_ckpt_path,
                peak_threshold=peak_threshold,
                integral_refinement=integral_refinement,
                integral_patch_size=integral_patch_size,
                batch_size=batch_size,
                return_confmaps=return_confmaps,
                device=device,
                preprocess_config=preprocess_config,
            )

        elif (
            "centroid" in model_names
            or "centered_instance" in model_names
            or "multi_class_topdown" in model_names
        ):
            centroid_ckpt_path = None
            confmap_ckpt_path = None
            if "centroid" in model_names:
                centroid_ckpt_path = model_paths[model_names.index("centroid")]
                predictor = TopDownPredictor.from_trained_models(
                    centroid_ckpt_path=centroid_ckpt_path,
                    confmap_ckpt_path=confmap_ckpt_path,
                    backbone_ckpt_path=backbone_ckpt_path,
                    head_ckpt_path=head_ckpt_path,
                    peak_threshold=peak_threshold,
                    integral_refinement=integral_refinement,
                    integral_patch_size=integral_patch_size,
                    batch_size=batch_size,
                    max_instances=max_instances,
                    return_confmaps=return_confmaps,
                    device=device,
                    preprocess_config=preprocess_config,
                    anchor_part=anchor_part,
                )
            if "centered_instance" in model_names:
                confmap_ckpt_path = model_paths[model_names.index("centered_instance")]
                # create an instance of the TopDown predictor class
                predictor = TopDownPredictor.from_trained_models(
                    centroid_ckpt_path=centroid_ckpt_path,
                    confmap_ckpt_path=confmap_ckpt_path,
                    backbone_ckpt_path=backbone_ckpt_path,
                    head_ckpt_path=head_ckpt_path,
                    peak_threshold=peak_threshold,
                    integral_refinement=integral_refinement,
                    integral_patch_size=integral_patch_size,
                    batch_size=batch_size,
                    max_instances=max_instances,
                    return_confmaps=return_confmaps,
                    device=device,
                    preprocess_config=preprocess_config,
                    anchor_part=anchor_part,
                )
            elif "multi_class_topdown" in model_names:
                confmap_ckpt_path = model_paths[
                    model_names.index("multi_class_topdown")
                ]
                # create an instance of the TopDown predictor class
                predictor = TopDownMultiClassPredictor.from_trained_models(
                    centroid_ckpt_path=centroid_ckpt_path,
                    confmap_ckpt_path=confmap_ckpt_path,
                    backbone_ckpt_path=backbone_ckpt_path,
                    head_ckpt_path=head_ckpt_path,
                    peak_threshold=peak_threshold,
                    integral_refinement=integral_refinement,
                    integral_patch_size=integral_patch_size,
                    batch_size=batch_size,
                    max_instances=max_instances,
                    return_confmaps=return_confmaps,
                    device=device,
                    preprocess_config=preprocess_config,
                    anchor_part=anchor_part,
                )

        elif "bottomup" in model_names:
            bottomup_ckpt_path = model_paths[model_names.index("bottomup")]
            predictor = BottomUpPredictor.from_trained_models(
                bottomup_ckpt_path=bottomup_ckpt_path,
                backbone_ckpt_path=backbone_ckpt_path,
                head_ckpt_path=head_ckpt_path,
                peak_threshold=peak_threshold,
                integral_refinement=integral_refinement,
                integral_patch_size=integral_patch_size,
                batch_size=batch_size,
                max_instances=max_instances,
                return_confmaps=return_confmaps,
                device=device,
                preprocess_config=preprocess_config,
            )

        elif "multi_class_bottomup" in model_names:
            bottomup_ckpt_path = model_paths[model_names.index("multi_class_bottomup")]
            predictor = BottomUpMultiClassPredictor.from_trained_models(
                bottomup_ckpt_path=bottomup_ckpt_path,
                backbone_ckpt_path=backbone_ckpt_path,
                head_ckpt_path=head_ckpt_path,
                peak_threshold=peak_threshold,
                integral_refinement=integral_refinement,
                integral_patch_size=integral_patch_size,
                batch_size=batch_size,
                max_instances=max_instances,
                return_confmaps=return_confmaps,
                device=device,
                preprocess_config=preprocess_config,
            )

        else:
            message = f"Could not create predictor from model paths:\n{model_paths}"
            logger.error(message)
            raise ValueError(message)
        return predictor

    @classmethod
    @abstractmethod
    def from_trained_models(cls, *args, **kwargs):
        """Initialize the Predictor class for certain type of model."""

    @abstractmethod
    def make_pipeline(
        self,
        data_path: str,
        queue_maxsize: int = 8,
        frames: Optional[list] = None,
        only_labeled_frames: bool = False,
        only_suggested_frames: bool = False,
        video_index: Optional[int] = None,
        video_dataset: Optional[str] = None,
        video_input_format: str = "channels_last",
    ):
        """Create the data pipeline."""

    @abstractmethod
    def _initialize_inference_model(self):
        """Initialize the Inference model."""

    def _convert_tensors_to_numpy(self, output):
        """Convert tensors in output dictionary to numpy arrays."""
        for k, v in output.items():
            if isinstance(v, torch.Tensor):
                output[k] = output[k].cpu().numpy()
            if isinstance(v, list) and isinstance(v[0], torch.Tensor):
                for n in range(len(v)):
                    v[n] = v[n].cpu().numpy()
        return output

    def _predict_generator(self) -> Iterator[Dict[str, np.ndarray]]:
        """Create a generator that yields batches of inference results.

        This method handles creating a pipeline object depending on the model type and
        provider for loading the data, as well as looping over the batches and
        running inference.

        Returns:
            A generator yielding batches predicted results as dictionaries of numpy
            arrays.
        """
        # Initialize inference model if needed.

        if self.inference_model is None:
            self._initialize_inference_model()

        # Loop over data batches.
        self.pipeline.start()
        total_frames = self.pipeline.total_len()
        done = False

        try:

            with Progress(
                "{task.description}",
                BarColumn(),
                "[progress.percentage]{task.percentage:>3.0f}%",
                MofNCompleteColumn(),
                "ETA:",
                TimeRemainingColumn(),
                "Elapsed:",
                TimeElapsedColumn(),
                RateColumn(),
                auto_refresh=False,
                refresh_per_second=4,  # Change to self.report_rate if needed
                speed_estimate_period=5,
            ) as progress:

                task = progress.add_task("Predicting...", total=total_frames)
                last_report = time()

                done = False
                while not done:
                    imgs = []
                    fidxs = []
                    vidxs = []
                    org_szs = []
                    instances = []
                    eff_scales = []
                    for _ in range(self.batch_size):
                        frame = self.pipeline.frame_buffer.get()
                        if frame["image"] is None:
                            done = True
                            break
                        frame["image"] = apply_normalization(frame["image"])
                        frame["image"], eff_scale = apply_sizematcher(
                            frame["image"],
                            self.preprocess_config["max_height"],
                            self.preprocess_config["max_width"],
                        )
                        if self.instances_key:
                            frame["instances"] = frame["instances"] * eff_scale
                        if (
                            self.preprocess_config["ensure_rgb"]
                            and frame["image"].shape[-3] != 3
                        ):
                            frame["image"] = frame["image"].repeat(1, 3, 1, 1)
                        elif (
                            self.preprocess_config["ensure_grayscale"]
                            and frame["image"].shape[-3] != 1
                        ):
                            frame["image"] = F.rgb_to_grayscale(
                                frame["image"], num_output_channels=1
                            )

                        eff_scales.append(torch.tensor(eff_scale))
                        imgs.append(frame["image"].unsqueeze(dim=0))
                        fidxs.append(frame["frame_idx"])
                        vidxs.append(frame["video_idx"])
                        org_szs.append(frame["orig_size"].unsqueeze(dim=0))
                        if self.instances_key:
                            instances.append(frame["instances"].unsqueeze(dim=0))
                    if imgs:
                        # TODO: all preprocessing should be moved into InferenceModels to be exportable.
                        imgs = torch.concatenate(imgs, dim=0)
                        fidxs = torch.tensor(fidxs, dtype=torch.int32)
                        vidxs = torch.tensor(vidxs, dtype=torch.int32)
                        org_szs = torch.concatenate(org_szs, dim=0)
                        eff_scales = torch.tensor(eff_scales, dtype=torch.float32)
                        if self.instances_key:
                            instances = torch.concatenate(instances, dim=0)
                        ex = {
                            "image": imgs,
                            "frame_idx": fidxs,
                            "video_idx": vidxs,
                            "orig_size": org_szs,
                            "eff_scale": eff_scales,
                        }
                        if self.instances_key:
                            ex["instances"] = instances
                        if self.preprocess:
                            scale = self.preprocess_config["scale"]
                            if scale != 1.0:
                                if self.instances_key:
                                    ex["image"], ex["instances"] = apply_resizer(
                                        ex["image"], ex["instances"]
                                    )
                                else:
                                    ex["image"] = resize_image(ex["image"], scale)
                            ex["image"] = apply_pad_to_stride(
                                ex["image"], self.max_stride
                            )
                        outputs_list = self.inference_model(ex)
                        if outputs_list is not None:
                            for output in outputs_list:
                                output = self._convert_tensors_to_numpy(output)
                                yield output

                        # Advance progress
                        num_frames = (
                            len(ex["frame_idx"])
                            if "frame_idx" in ex
                            else self.batch_size
                        )
                        progress.update(task, advance=num_frames)

                    # Manually refresh progress bar
                    if time() - last_report > 0.25:
                        progress.refresh()
                        last_report = time()

        except KeyboardInterrupt:
            logger.info("Inference interrupted by user")
            raise KeyboardInterrupt

        except Exception as e:
            message = f"Error in _predict_generator: {e}"
            logger.error(message)
            raise Exception(message)

        self.pipeline.join()

    def predict(
        self,
        make_labels: bool = True,
    ) -> Union[List[Dict[str, np.ndarray]], sio.Labels]:
        """Run inference on a data source.

        Args:
            make_labels: If `True` (the default), returns a `sio.Labels` instance with
                `sio.PredictedInstance`s. If `False`, just return a list of
                dictionaries containing the raw arrays returned by the inference model.

        Returns:
            A `sio.Labels` with `sio.PredictedInstance`s if `make_labels` is `True`,
            otherwise a list of dictionaries containing batches of numpy arrays with the
            raw results.
        """
        # Initialize inference loop generator.
        generator = self._predict_generator()

        if make_labels:
            # Create SLEAP data structures from the predictions.
            pred_labels = self._make_labeled_frames_from_generator(generator)
            return pred_labels

        else:
            # Just return the raw results.
            return list(generator)

    @abstractmethod
    def _make_labeled_frames_from_generator(self, generator) -> sio.Labels:
        """Create `sio.Labels` object from the predictions."""

from_model_paths(model_paths, backbone_ckpt_path=None, head_ckpt_path=None, peak_threshold=0.2, integral_refinement='integral', integral_patch_size=5, batch_size=4, max_instances=None, return_confmaps=False, device='cpu', preprocess_config=None, anchor_part=None) classmethod

Create the appropriate Predictor subclass from from the ckpt path.

Parameters:

Name Type Description Default
model_paths List[Text]

(List[str]) List of paths to the directory where the best.ckpt (or from SLEAP <=1.4 best_model - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json) are saved.

required
backbone_ckpt_path Optional[str]

(str) To run inference on any .ckpt other than best.ckpt from the model_paths dir, the path to the .ckpt file should be passed here.

None
head_ckpt_path Optional[str]

(str) Path to .ckpt file if a different set of head layer weights are to be used. If None, the best.ckpt from model_paths dir is used (or the ckpt from backbone_ckpt_path if provided.)

None
peak_threshold Union[float, List[float]]

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2. This can also be List[float] for topdown centroid and centered-instance model, where the first element corresponds to centroid model peak finding threshold and the second element is for centered-instance model peak finding.

0.2
integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

'integral'
integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

5
batch_size int

(int) Number of samples per batch. Default: 4.

4
max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

None
return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

False
device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

'cpu'
preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

None
anchor_part Optional[str]

(str) The name of the node to use as the anchor for the centroid. If not provided, the anchor part in the training_config.yaml is used instead. Default: None.

None

Returns:

Type Description
Predictor

A subclass of Predictor.

SingleInstancePredictor, TopDownPredictor, BottomUpPredictor,

MoveNetPredictor, TopDownMultiClassPredictor, BottomUpMultiClassPredictor.

Source code in sleap_nn/inference/predictors.py
@classmethod
def from_model_paths(
    cls,
    model_paths: List[Text],
    backbone_ckpt_path: Optional[str] = None,
    head_ckpt_path: Optional[str] = None,
    peak_threshold: Union[float, List[float]] = 0.2,
    integral_refinement: str = "integral",
    integral_patch_size: int = 5,
    batch_size: int = 4,
    max_instances: Optional[int] = None,
    return_confmaps: bool = False,
    device: str = "cpu",
    preprocess_config: Optional[OmegaConf] = None,
    anchor_part: Optional[str] = None,
) -> "Predictor":
    """Create the appropriate `Predictor` subclass from from the ckpt path.

    Args:
        model_paths: (List[str]) List of paths to the directory where the best.ckpt (or from SLEAP <=1.4 best_model - only UNet backbone is supported)
            and training_config.yaml (or from SLEAP <=1.4 training_config.json) are saved.
        backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
            from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
        head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
            are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
            from `backbone_ckpt_path` if provided.)
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2. This can also be `List[float]` for topdown
            centroid and centered-instance model, where the first element corresponds
            to centroid model peak finding threshold and the second element is for
            centered-instance model peak finding.
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
            provided, the anchor part in the `training_config.yaml` is used instead. Default: None.

    Returns:
        A subclass of `Predictor`.

    See also: `SingleInstancePredictor`, `TopDownPredictor`, `BottomUpPredictor`,
        `MoveNetPredictor`, `TopDownMultiClassPredictor`,
        `BottomUpMultiClassPredictor`.
    """
    model_configs = []
    for model_path in model_paths:
        path = Path(model_path)
        if path / "training_config.yaml" in path.iterdir():
            model_configs.append(
                OmegaConf.load((path / "training_config.yaml").as_posix())
            )
        elif path / "training_config.json" in path.iterdir():
            model_configs.append(
                TrainingJobConfig.load_sleap_config(
                    (path / "training_config.json").as_posix()
                )
            )
        else:
            raise ValueError(
                f"Could not find training_config.yaml or training_config.json in {model_path}"
            )

    model_names = []
    for config in model_configs:
        model_names.append(get_model_type_from_cfg(config=config))

    if "single_instance" in model_names:
        confmap_ckpt_path = model_paths[model_names.index("single_instance")]
        predictor = SingleInstancePredictor.from_trained_models(
            confmap_ckpt_path,
            backbone_ckpt_path=backbone_ckpt_path,
            head_ckpt_path=head_ckpt_path,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            return_confmaps=return_confmaps,
            device=device,
            preprocess_config=preprocess_config,
        )

    elif (
        "centroid" in model_names
        or "centered_instance" in model_names
        or "multi_class_topdown" in model_names
    ):
        centroid_ckpt_path = None
        confmap_ckpt_path = None
        if "centroid" in model_names:
            centroid_ckpt_path = model_paths[model_names.index("centroid")]
            predictor = TopDownPredictor.from_trained_models(
                centroid_ckpt_path=centroid_ckpt_path,
                confmap_ckpt_path=confmap_ckpt_path,
                backbone_ckpt_path=backbone_ckpt_path,
                head_ckpt_path=head_ckpt_path,
                peak_threshold=peak_threshold,
                integral_refinement=integral_refinement,
                integral_patch_size=integral_patch_size,
                batch_size=batch_size,
                max_instances=max_instances,
                return_confmaps=return_confmaps,
                device=device,
                preprocess_config=preprocess_config,
                anchor_part=anchor_part,
            )
        if "centered_instance" in model_names:
            confmap_ckpt_path = model_paths[model_names.index("centered_instance")]
            # create an instance of the TopDown predictor class
            predictor = TopDownPredictor.from_trained_models(
                centroid_ckpt_path=centroid_ckpt_path,
                confmap_ckpt_path=confmap_ckpt_path,
                backbone_ckpt_path=backbone_ckpt_path,
                head_ckpt_path=head_ckpt_path,
                peak_threshold=peak_threshold,
                integral_refinement=integral_refinement,
                integral_patch_size=integral_patch_size,
                batch_size=batch_size,
                max_instances=max_instances,
                return_confmaps=return_confmaps,
                device=device,
                preprocess_config=preprocess_config,
                anchor_part=anchor_part,
            )
        elif "multi_class_topdown" in model_names:
            confmap_ckpt_path = model_paths[
                model_names.index("multi_class_topdown")
            ]
            # create an instance of the TopDown predictor class
            predictor = TopDownMultiClassPredictor.from_trained_models(
                centroid_ckpt_path=centroid_ckpt_path,
                confmap_ckpt_path=confmap_ckpt_path,
                backbone_ckpt_path=backbone_ckpt_path,
                head_ckpt_path=head_ckpt_path,
                peak_threshold=peak_threshold,
                integral_refinement=integral_refinement,
                integral_patch_size=integral_patch_size,
                batch_size=batch_size,
                max_instances=max_instances,
                return_confmaps=return_confmaps,
                device=device,
                preprocess_config=preprocess_config,
                anchor_part=anchor_part,
            )

    elif "bottomup" in model_names:
        bottomup_ckpt_path = model_paths[model_names.index("bottomup")]
        predictor = BottomUpPredictor.from_trained_models(
            bottomup_ckpt_path=bottomup_ckpt_path,
            backbone_ckpt_path=backbone_ckpt_path,
            head_ckpt_path=head_ckpt_path,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            max_instances=max_instances,
            return_confmaps=return_confmaps,
            device=device,
            preprocess_config=preprocess_config,
        )

    elif "multi_class_bottomup" in model_names:
        bottomup_ckpt_path = model_paths[model_names.index("multi_class_bottomup")]
        predictor = BottomUpMultiClassPredictor.from_trained_models(
            bottomup_ckpt_path=bottomup_ckpt_path,
            backbone_ckpt_path=backbone_ckpt_path,
            head_ckpt_path=head_ckpt_path,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            max_instances=max_instances,
            return_confmaps=return_confmaps,
            device=device,
            preprocess_config=preprocess_config,
        )

    else:
        message = f"Could not create predictor from model paths:\n{model_paths}"
        logger.error(message)
        raise ValueError(message)
    return predictor

from_trained_models(*args, **kwargs) abstractmethod classmethod

Initialize the Predictor class for certain type of model.

Source code in sleap_nn/inference/predictors.py
@classmethod
@abstractmethod
def from_trained_models(cls, *args, **kwargs):
    """Initialize the Predictor class for certain type of model."""

make_pipeline(data_path, queue_maxsize=8, frames=None, only_labeled_frames=False, only_suggested_frames=False, video_index=None, video_dataset=None, video_input_format='channels_last') abstractmethod

Create the data pipeline.

Source code in sleap_nn/inference/predictors.py
@abstractmethod
def make_pipeline(
    self,
    data_path: str,
    queue_maxsize: int = 8,
    frames: Optional[list] = None,
    only_labeled_frames: bool = False,
    only_suggested_frames: bool = False,
    video_index: Optional[int] = None,
    video_dataset: Optional[str] = None,
    video_input_format: str = "channels_last",
):
    """Create the data pipeline."""

predict(make_labels=True)

Run inference on a data source.

Parameters:

Name Type Description Default
make_labels bool

If True (the default), returns a sio.Labels instance with sio.PredictedInstances. If False, just return a list of dictionaries containing the raw arrays returned by the inference model.

True

Returns:

Type Description
Union[List[Dict[str, ndarray]], Labels]

A sio.Labels with sio.PredictedInstances if make_labels is True, otherwise a list of dictionaries containing batches of numpy arrays with the raw results.

Source code in sleap_nn/inference/predictors.py
def predict(
    self,
    make_labels: bool = True,
) -> Union[List[Dict[str, np.ndarray]], sio.Labels]:
    """Run inference on a data source.

    Args:
        make_labels: If `True` (the default), returns a `sio.Labels` instance with
            `sio.PredictedInstance`s. If `False`, just return a list of
            dictionaries containing the raw arrays returned by the inference model.

    Returns:
        A `sio.Labels` with `sio.PredictedInstance`s if `make_labels` is `True`,
        otherwise a list of dictionaries containing batches of numpy arrays with the
        raw results.
    """
    # Initialize inference loop generator.
    generator = self._predict_generator()

    if make_labels:
        # Create SLEAP data structures from the predictions.
        pred_labels = self._make_labeled_frames_from_generator(generator)
        return pred_labels

    else:
        # Just return the raw results.
        return list(generator)

RateColumn

Bases: ProgressColumn

Renders the progress rate.

Methods:

Name Description
render

Show progress rate.

Source code in sleap_nn/inference/predictors.py
class RateColumn(rich.progress.ProgressColumn):
    """Renders the progress rate."""

    def render(self, task: "Task") -> rich.progress.Text:
        """Show progress rate."""
        speed = task.speed
        if speed is None:
            return rich.progress.Text("?", style="progress.data.speed")
        return rich.progress.Text(f"{speed:.1f} FPS", style="progress.data.speed")

render(task)

Show progress rate.

Source code in sleap_nn/inference/predictors.py
def render(self, task: "Task") -> rich.progress.Text:
    """Show progress rate."""
    speed = task.speed
    if speed is None:
        return rich.progress.Text("?", style="progress.data.speed")
    return rich.progress.Text(f"{speed:.1f} FPS", style="progress.data.speed")

SingleInstancePredictor

Bases: Predictor

Single-Instance predictor.

This high-level class handles initialization, preprocessing and predicting using a trained single instance SLEAP-NN model.

This should be initialized using the from_trained_models() constructor.

Attributes:

Name Type Description
confmap_config Optional[OmegaConf]

A Dictionary with the configs used for training the single-instance model.

confmap_model Optional[LightningModule]

A LightningModule instance created from the trained weights for single-instance model.

backbone_type str

Backbone model. One of unet, convnext and swint.

videos Optional[List[Video]]

List of sio.Video objects for creating the sio.Labels object from the output predictions.

skeletons Optional[List[Skeleton]]

List of sio.Skeleton objects for creating sio.Labels object from the output predictions.

peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

batch_size int

(int) Number of samples per batch. Default: 4.

return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

Methods:

Name Description
from_trained_models

Create predictor from saved models.

make_pipeline

Make a data loading pipeline.

Source code in sleap_nn/inference/predictors.py
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
@attrs.define
class SingleInstancePredictor(Predictor):
    """Single-Instance predictor.

    This high-level class handles initialization, preprocessing and predicting using a
    trained single instance SLEAP-NN model.

    This should be initialized using the `from_trained_models()` constructor.

    Attributes:
        confmap_config: A Dictionary with the configs used for training the
                        single-instance model.
        confmap_model: A LightningModule instance created from the trained weights for
                       single-instance model.
        backbone_type: Backbone model. One of `unet`, `convnext` and `swint`.
        videos: List of `sio.Video` objects for creating the `sio.Labels` object from
                        the output predictions.
        skeletons: List of `sio.Skeleton` objects for creating `sio.Labels` object from
                        the output predictions.
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    """

    confmap_config: Optional[OmegaConf] = attrs.field(default=None)
    confmap_model: Optional[L.LightningModule] = attrs.field(default=None)
    backbone_type: str = "unet"
    videos: Optional[List[sio.Video]] = attrs.field(default=None)
    skeletons: Optional[List[sio.Skeleton]] = attrs.field(default=None)
    peak_threshold: float = 0.2
    integral_refinement: str = "integral"
    integral_patch_size: int = 5
    batch_size: int = 4
    return_confmaps: bool = False
    device: str = "cpu"
    preprocess_config: Optional[OmegaConf] = None
    max_stride: int = 16

    def _initialize_inference_model(self):
        """Initialize the inference model from the trained models and configuration."""
        self.inference_model = SingleInstanceInferenceModel(
            torch_model=self.confmap_model,
            peak_threshold=self.peak_threshold,
            output_stride=self.confmap_config.model_config.head_configs.single_instance.confmaps.output_stride,
            refinement=self.integral_refinement,
            integral_patch_size=self.integral_patch_size,
            return_confmaps=self.return_confmaps,
            input_scale=self.confmap_config.data_config.preprocessing.scale,
        )

    @classmethod
    def from_trained_models(
        cls,
        confmap_ckpt_path: Optional[Text] = None,
        backbone_ckpt_path: Optional[str] = None,
        head_ckpt_path: Optional[str] = None,
        peak_threshold: float = 0.2,
        integral_refinement: str = "integral",
        integral_patch_size: int = 5,
        batch_size: int = 4,
        return_confmaps: bool = False,
        device: str = "cpu",
        preprocess_config: Optional[OmegaConf] = None,
        max_stride: int = 16,
    ) -> "SingleInstancePredictor":
        """Create predictor from saved models.

        Args:
            confmap_ckpt_path: Path to a single instance ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
            backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
                from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
            head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                from `backbone_ckpt_path` if provided.)
            peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2
            integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
                If `"integral"`, peaks will be refined with integral regression.
                Default: "integral".
            integral_patch_size: (int) Size of patches to crop around each rough peak as an
                integer scalar. Default: 5.
            batch_size: (int) Number of samples per batch. Default: 4.
            return_confmaps: (bool) If `True`, predicted confidence maps will be returned
                along with the predicted peak values and points. Default: False.
            device: (str) Device on which torch.Tensor will be allocated. One of the
                ("cpu", "cuda", "mps").
                Default: "cpu"
            preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
            max_stride: The maximum stride of the backbone network, as specified in the model's
                `backbone_config`. This determines the downsampling factor applied by the backbone,
                and is used to ensure that input images are padded or resized to be compatible
                with the model's architecture. Default: 16.

        Returns:
            An instance of `SingleInstancePredictor` with the loaded models.

        """
        is_sleap_ckpt = False
        if (
            Path(confmap_ckpt_path) / "training_config.yaml"
            in Path(confmap_ckpt_path).iterdir()
        ):
            confmap_config = OmegaConf.load(
                (Path(confmap_ckpt_path) / "training_config.yaml").as_posix()
            )
        elif (
            Path(confmap_ckpt_path) / "training_config.json"
            in Path(confmap_ckpt_path).iterdir()
        ):
            is_sleap_ckpt = True
            confmap_config = TrainingJobConfig.load_sleap_config(
                (Path(confmap_ckpt_path) / "training_config.json").as_posix()
            )

        # check which backbone architecture
        for k, v in confmap_config.model_config.backbone_config.items():
            if v is not None:
                backbone_type = k
                break

        if not is_sleap_ckpt:
            ckpt_path = (Path(confmap_ckpt_path) / "best.ckpt").as_posix()
            confmap_model = SingleInstanceLightningModule.load_from_checkpoint(
                checkpoint_path=ckpt_path,
                model_type="single_instance",
                backbone_config=confmap_config.model_config.backbone_config,
                head_configs=confmap_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=confmap_config.model_config.init_weights,
                lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                backbone_type=backbone_type,
                online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=confmap_config.trainer_config.optimizer_name,
                learning_rate=confmap_config.trainer_config.optimizer.lr,
                amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                map_location=device,
            )
        else:
            confmap_converted_model = load_legacy_model(
                model_dir=f"{confmap_ckpt_path}"
            )
            confmap_model = SingleInstanceLightningModule(
                backbone_type=backbone_type,
                backbone_config=confmap_config.model_config.backbone_config,
                head_configs=confmap_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=confmap_config.model_config.init_weights,
                lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=confmap_config.trainer_config.optimizer_name,
                learning_rate=confmap_config.trainer_config.optimizer.lr,
                amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                model_type="single_instance",
            )
            confmap_model.eval()
            confmap_model.model = confmap_converted_model
            confmap_model.to(device)

        confmap_model.eval()

        skeletons = get_skeleton_from_config(confmap_config.data_config.skeletons)

        if backbone_ckpt_path is not None and head_ckpt_path is not None:
            logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".backbone" in k
            }
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        elif backbone_ckpt_path is not None:
            logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        if head_ckpt_path is not None:
            logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
            ckpt = torch.load(head_ckpt_path, map_location=device, weights_only=False)
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".head_layers" in k
            }
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)
        confmap_model.to(device)

        for k, v in preprocess_config.items():
            if v is None:
                preprocess_config[k] = (
                    confmap_config.data_config.preprocessing[k]
                    if k in confmap_config.data_config.preprocessing
                    else None
                )

        # create an instance of SingleInstancePredictor class
        obj = cls(
            confmap_config=confmap_config,
            confmap_model=confmap_model,
            backbone_type=backbone_type,
            skeletons=skeletons,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            return_confmaps=return_confmaps,
            device=device,
            preprocess_config=preprocess_config,
            max_stride=confmap_config.model_config.backbone_config[f"{backbone_type}"][
                "max_stride"
            ],
        )

        obj._initialize_inference_model()
        return obj

    def make_pipeline(
        self,
        inference_object: Union[str, Path, sio.Labels, sio.Video],
        queue_maxsize: int = 8,
        frames: Optional[list] = None,
        only_labeled_frames: bool = False,
        only_suggested_frames: bool = False,
        video_index: Optional[int] = None,
        video_dataset: Optional[str] = None,
        video_input_format: str = "channels_last",
    ):
        """Make a data loading pipeline.

        Args:
            inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
            queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
            frames: List of frames indices. If `None`, all frames in the video are used. Default: None.
            only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
            only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
            video_index: (int) Integer index of video in .slp file to predict on. To be used
                with an .slp path as an alternative to specifying the video path.
            video_dataset: (str) The dataset for HDF5 videos.
            video_input_format: (str) The input_format for HDF5 videos.

        Returns:
            This method initiates the reader class (doesn't return a pipeline) and the
            Thread is started in Predictor._predict_generator() method.

        """
        if isinstance(inference_object, str) or isinstance(inference_object, Path):
            inference_object = (
                sio.load_slp(inference_object)
                if inference_object.endswith(".slp")
                else sio.load_video(
                    inference_object,
                    dataset=video_dataset,
                    input_format=video_input_format,
                )
            )

        self.preprocess = True
        # LabelsReader provider
        if isinstance(inference_object, sio.Labels) and video_index is None:
            provider = LabelsReader

            frame_buffer = Queue(maxsize=queue_maxsize)

            self.pipeline = provider(
                labels=inference_object,
                frame_buffer=frame_buffer,
                only_labeled_frames=only_labeled_frames,
                only_suggested_frames=only_suggested_frames,
            )
            self.videos = self.pipeline.labels.videos

        else:
            provider = VideoReader

            if isinstance(inference_object, sio.Labels) and video_index is not None:
                labels = inference_object
                self.pipeline = provider.from_video(
                    video=labels.videos[video_index],
                    queue_maxsize=queue_maxsize,
                    frames=frames,
                )

            else:  # for mp4 or hdf5 videos
                frame_buffer = Queue(maxsize=queue_maxsize)
                self.pipeline = provider(
                    video=inference_object,
                    frame_buffer=frame_buffer,
                    frames=frames,
                )

            self.videos = [self.pipeline.video]

    def _make_labeled_frames_from_generator(
        self,
        generator: Iterator[Dict[str, np.ndarray]],
    ) -> sio.Labels:
        """Create labeled frames from a generator that yields inference results.

        This method converts pure arrays into SLEAP-specific data structures.

        Args:
            generator: A generator that returns dictionaries with inference results.
                This should return dictionaries with keys `"image"`, `"video_idx"`,
                `"frame_idx"`, `"pred_instance_peaks"`, `"pred_peak_values"`.
                This can be created using the `_predict_generator()` method.

        Returns:
            A `sio.Labels` object with `sio.PredictedInstance`s created from
            arrays returned from the inference result generator.
        """
        # open video backend for tracking
        for video in self.videos:
            if not video.open_backend:
                video.open()

        predicted_frames = []

        skeleton_idx = 0
        for ex in generator:
            # loop through each sample in a batch
            for (
                video_idx,
                frame_idx,
                pred_instances,
                pred_values,
                org_size,
            ) in zip(
                ex["video_idx"],
                ex["frame_idx"],
                ex["pred_instance_peaks"],
                ex["pred_peak_values"],
                ex["orig_size"],
            ):

                if np.isnan(pred_instances).all():
                    continue
                inst = sio.PredictedInstance.from_numpy(
                    points_data=pred_instances,
                    skeleton=self.skeletons[skeleton_idx],
                    score=np.nansum(pred_values),
                    point_scores=pred_values,
                )
                predicted_frames.append(
                    sio.LabeledFrame(
                        video=self.videos[video_idx],
                        frame_idx=frame_idx,
                        instances=[inst],
                    )
                )

        pred_labels = sio.Labels(
            videos=self.videos,
            skeletons=self.skeletons,
            labeled_frames=predicted_frames,
        )
        return pred_labels

from_trained_models(confmap_ckpt_path=None, backbone_ckpt_path=None, head_ckpt_path=None, peak_threshold=0.2, integral_refinement='integral', integral_patch_size=5, batch_size=4, return_confmaps=False, device='cpu', preprocess_config=None, max_stride=16) classmethod

Create predictor from saved models.

Parameters:

Name Type Description Default
confmap_ckpt_path Optional[Text]

Path to a single instance ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).

None
backbone_ckpt_path Optional[str]

(str) To run inference on any .ckpt other than best.ckpt from the model_paths dir, the path to the .ckpt file should be passed here.

None
head_ckpt_path Optional[str]

(str) Path to .ckpt file if a different set of head layer weights are to be used. If None, the best.ckpt from model_paths dir is used (or the ckpt from backbone_ckpt_path if provided.)

None
peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

0.2
integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

'integral'
integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

5
batch_size int

(int) Number of samples per batch. Default: 4.

4
return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

False
device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

'cpu'
preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

None
max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

16

Returns:

Type Description
SingleInstancePredictor

An instance of SingleInstancePredictor with the loaded models.

Source code in sleap_nn/inference/predictors.py
@classmethod
def from_trained_models(
    cls,
    confmap_ckpt_path: Optional[Text] = None,
    backbone_ckpt_path: Optional[str] = None,
    head_ckpt_path: Optional[str] = None,
    peak_threshold: float = 0.2,
    integral_refinement: str = "integral",
    integral_patch_size: int = 5,
    batch_size: int = 4,
    return_confmaps: bool = False,
    device: str = "cpu",
    preprocess_config: Optional[OmegaConf] = None,
    max_stride: int = 16,
) -> "SingleInstancePredictor":
    """Create predictor from saved models.

    Args:
        confmap_ckpt_path: Path to a single instance ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
        backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
            from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
        head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
            are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
            from `backbone_ckpt_path` if provided.)
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    Returns:
        An instance of `SingleInstancePredictor` with the loaded models.

    """
    is_sleap_ckpt = False
    if (
        Path(confmap_ckpt_path) / "training_config.yaml"
        in Path(confmap_ckpt_path).iterdir()
    ):
        confmap_config = OmegaConf.load(
            (Path(confmap_ckpt_path) / "training_config.yaml").as_posix()
        )
    elif (
        Path(confmap_ckpt_path) / "training_config.json"
        in Path(confmap_ckpt_path).iterdir()
    ):
        is_sleap_ckpt = True
        confmap_config = TrainingJobConfig.load_sleap_config(
            (Path(confmap_ckpt_path) / "training_config.json").as_posix()
        )

    # check which backbone architecture
    for k, v in confmap_config.model_config.backbone_config.items():
        if v is not None:
            backbone_type = k
            break

    if not is_sleap_ckpt:
        ckpt_path = (Path(confmap_ckpt_path) / "best.ckpt").as_posix()
        confmap_model = SingleInstanceLightningModule.load_from_checkpoint(
            checkpoint_path=ckpt_path,
            model_type="single_instance",
            backbone_config=confmap_config.model_config.backbone_config,
            head_configs=confmap_config.model_config.head_configs,
            pretrained_backbone_weights=None,
            pretrained_head_weights=None,
            init_weights=confmap_config.model_config.init_weights,
            lr_scheduler=confmap_config.trainer_config.lr_scheduler,
            backbone_type=backbone_type,
            online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
            hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
            min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
            max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
            loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
            optimizer=confmap_config.trainer_config.optimizer_name,
            learning_rate=confmap_config.trainer_config.optimizer.lr,
            amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
            map_location=device,
        )
    else:
        confmap_converted_model = load_legacy_model(
            model_dir=f"{confmap_ckpt_path}"
        )
        confmap_model = SingleInstanceLightningModule(
            backbone_type=backbone_type,
            backbone_config=confmap_config.model_config.backbone_config,
            head_configs=confmap_config.model_config.head_configs,
            pretrained_backbone_weights=None,
            pretrained_head_weights=None,
            init_weights=confmap_config.model_config.init_weights,
            lr_scheduler=confmap_config.trainer_config.lr_scheduler,
            online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
            hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
            min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
            max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
            loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
            optimizer=confmap_config.trainer_config.optimizer_name,
            learning_rate=confmap_config.trainer_config.optimizer.lr,
            amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
            model_type="single_instance",
        )
        confmap_model.eval()
        confmap_model.model = confmap_converted_model
        confmap_model.to(device)

    confmap_model.eval()

    skeletons = get_skeleton_from_config(confmap_config.data_config.skeletons)

    if backbone_ckpt_path is not None and head_ckpt_path is not None:
        logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
        ckpt = torch.load(
            backbone_ckpt_path, map_location=device, weights_only=False
        )
        ckpt["state_dict"] = {
            k: ckpt["state_dict"][k]
            for k in ckpt["state_dict"].keys()
            if ".backbone" in k
        }
        confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

    elif backbone_ckpt_path is not None:
        logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
        ckpt = torch.load(
            backbone_ckpt_path, map_location=device, weights_only=False
        )
        confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

    if head_ckpt_path is not None:
        logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
        ckpt = torch.load(head_ckpt_path, map_location=device, weights_only=False)
        ckpt["state_dict"] = {
            k: ckpt["state_dict"][k]
            for k in ckpt["state_dict"].keys()
            if ".head_layers" in k
        }
        confmap_model.load_state_dict(ckpt["state_dict"], strict=False)
    confmap_model.to(device)

    for k, v in preprocess_config.items():
        if v is None:
            preprocess_config[k] = (
                confmap_config.data_config.preprocessing[k]
                if k in confmap_config.data_config.preprocessing
                else None
            )

    # create an instance of SingleInstancePredictor class
    obj = cls(
        confmap_config=confmap_config,
        confmap_model=confmap_model,
        backbone_type=backbone_type,
        skeletons=skeletons,
        peak_threshold=peak_threshold,
        integral_refinement=integral_refinement,
        integral_patch_size=integral_patch_size,
        batch_size=batch_size,
        return_confmaps=return_confmaps,
        device=device,
        preprocess_config=preprocess_config,
        max_stride=confmap_config.model_config.backbone_config[f"{backbone_type}"][
            "max_stride"
        ],
    )

    obj._initialize_inference_model()
    return obj

make_pipeline(inference_object, queue_maxsize=8, frames=None, only_labeled_frames=False, only_suggested_frames=False, video_index=None, video_dataset=None, video_input_format='channels_last')

Make a data loading pipeline.

Parameters:

Name Type Description Default
inference_object Union[str, Path, Labels, Video]

(str) Path to .slp file or .mp4 or sio.Labels or sio.Video to run inference on.

required
queue_maxsize int

(int) Maximum size of the frame buffer queue. Default: 8.

8
frames Optional[list]

List of frames indices. If None, all frames in the video are used. Default: None.

None
only_labeled_frames bool

(bool) True if inference should be run only on user-labeled frames. Default: False.

False
only_suggested_frames bool

(bool) True if inference should be run only on unlabeled suggested frames. Default: False.

False
video_index Optional[int]

(int) Integer index of video in .slp file to predict on. To be used with an .slp path as an alternative to specifying the video path.

None
video_dataset Optional[str]

(str) The dataset for HDF5 videos.

None
video_input_format str

(str) The input_format for HDF5 videos.

'channels_last'

Returns:

Type Description

This method initiates the reader class (doesn't return a pipeline) and the Thread is started in Predictor._predict_generator() method.

Source code in sleap_nn/inference/predictors.py
def make_pipeline(
    self,
    inference_object: Union[str, Path, sio.Labels, sio.Video],
    queue_maxsize: int = 8,
    frames: Optional[list] = None,
    only_labeled_frames: bool = False,
    only_suggested_frames: bool = False,
    video_index: Optional[int] = None,
    video_dataset: Optional[str] = None,
    video_input_format: str = "channels_last",
):
    """Make a data loading pipeline.

    Args:
        inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
        queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
        frames: List of frames indices. If `None`, all frames in the video are used. Default: None.
        only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
        only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
        video_index: (int) Integer index of video in .slp file to predict on. To be used
            with an .slp path as an alternative to specifying the video path.
        video_dataset: (str) The dataset for HDF5 videos.
        video_input_format: (str) The input_format for HDF5 videos.

    Returns:
        This method initiates the reader class (doesn't return a pipeline) and the
        Thread is started in Predictor._predict_generator() method.

    """
    if isinstance(inference_object, str) or isinstance(inference_object, Path):
        inference_object = (
            sio.load_slp(inference_object)
            if inference_object.endswith(".slp")
            else sio.load_video(
                inference_object,
                dataset=video_dataset,
                input_format=video_input_format,
            )
        )

    self.preprocess = True
    # LabelsReader provider
    if isinstance(inference_object, sio.Labels) and video_index is None:
        provider = LabelsReader

        frame_buffer = Queue(maxsize=queue_maxsize)

        self.pipeline = provider(
            labels=inference_object,
            frame_buffer=frame_buffer,
            only_labeled_frames=only_labeled_frames,
            only_suggested_frames=only_suggested_frames,
        )
        self.videos = self.pipeline.labels.videos

    else:
        provider = VideoReader

        if isinstance(inference_object, sio.Labels) and video_index is not None:
            labels = inference_object
            self.pipeline = provider.from_video(
                video=labels.videos[video_index],
                queue_maxsize=queue_maxsize,
                frames=frames,
            )

        else:  # for mp4 or hdf5 videos
            frame_buffer = Queue(maxsize=queue_maxsize)
            self.pipeline = provider(
                video=inference_object,
                frame_buffer=frame_buffer,
                frames=frames,
            )

        self.videos = [self.pipeline.video]

TopDownMultiClassPredictor

Bases: Predictor

Top-down multi-class predictor.

This high-level class handles initialization, preprocessing and predicting using a trained TopDown SLEAP-NN model. This should be initialized using the from_trained_models() constructor.

Attributes:

Name Type Description
centroid_config Optional[OmegaConf]

A Dictionary with the configs used for training the centroid model.

confmap_config Optional[OmegaConf]

A Dictionary with the configs used for training the centered-instance model

centroid_model Optional[LightningModule]

A LightningModule instance created from the trained weights for centroid model.

confmap_model Optional[LightningModule]

A LightningModule instance created from the trained weights for centered-instance model.

centroid_backbone_type Optional[str]

Backbone model. One of unet, convnext and swint.

centered_instance_backbone_type Optional[str]

Backbone model. One of unet, convnext and swint.

videos Optional[List[Video]]

List of sio.Video objects for creating the sio.Labels object from the output predictions.

skeletons Optional[List[Skeleton]]

List of sio.Skeleton objects for creating sio.Labels object from the output predictions.

peak_threshold Union[float, List[float]]

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2. This can also be List[float] for topdown centroid and centered-instance model, where the first element corresponds to centroid model peak finding threshold and the second element is for centered-instance model peak finding.

integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

batch_size int

(int) Number of samples per batch. Default: 4.

max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

anchor_part Optional[str]

(str) The name of the node to use as the anchor for the centroid. If not provided, the anchor part in the training_config.yaml is used instead. Default: None.

max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

Methods:

Name Description
from_trained_models

Create predictor from saved models.

make_pipeline

Make a data loading pipeline.

Source code in sleap_nn/inference/predictors.py
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
@attrs.define
class TopDownMultiClassPredictor(Predictor):
    """Top-down multi-class predictor.

    This high-level class handles initialization, preprocessing and predicting using a
    trained TopDown SLEAP-NN model. This should be initialized using the
    `from_trained_models()` constructor.

    Attributes:
        centroid_config: A Dictionary with the configs used for training the centroid model.
        confmap_config: A Dictionary with the configs used for training the
                        centered-instance model
        centroid_model: A LightningModule instance created from the trained weights
                        for centroid model.
        confmap_model: A LightningModule instance created from the trained weights
                       for centered-instance model.
        centroid_backbone_type: Backbone model. One of `unet`, `convnext` and `swint`.
        centered_instance_backbone_type: Backbone model. One of `unet`, `convnext` and `swint`.
        videos: List of `sio.Video` objects for creating the `sio.Labels` object from
                        the output predictions.
        skeletons: List of `sio.Skeleton` objects for creating `sio.Labels` object from
                        the output predictions.
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2. This can also be `List[float]` for topdown
                centroid and centered-instance model, where the first element corresponds
                to centroid model peak finding threshold and the second element is for
                centered-instance model peak finding.
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
            provided, the anchor part in the `training_config.yaml` is used instead. Default: None.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    """

    centroid_config: Optional[OmegaConf] = None
    confmap_config: Optional[OmegaConf] = None
    centroid_model: Optional[L.LightningModule] = None
    confmap_model: Optional[L.LightningModule] = None
    centroid_backbone_type: Optional[str] = None
    centered_instance_backbone_type: Optional[str] = None
    videos: Optional[List[sio.Video]] = None
    skeletons: Optional[List[sio.Skeleton]] = None
    peak_threshold: Union[float, List[float]] = 0.2
    integral_refinement: str = "integral"
    integral_patch_size: int = 5
    batch_size: int = 4
    max_instances: Optional[int] = None
    return_confmaps: bool = False
    device: str = "cpu"
    preprocess_config: Optional[OmegaConf] = None
    anchor_part: Optional[str] = None
    max_stride: int = 16

    def _initialize_inference_model(self):
        """Initialize the inference model from the trained models and configuration."""
        # Create an instance of CentroidLayer if centroid_config is not None
        return_crops = False
        # if both centroid and centered-instance model are provided, set return crops to True
        if self.confmap_model:
            return_crops = True
        if isinstance(self.peak_threshold, list):
            centroid_peak_threshold = self.peak_threshold[0]
            centered_instance_peak_threshold = self.peak_threshold[1]
        else:
            centroid_peak_threshold = self.peak_threshold
            centered_instance_peak_threshold = self.peak_threshold

        if self.anchor_part is not None:
            anchor_ind = self.skeletons[0].node_names.index(self.anchor_part)
        else:
            anch_pt = None
            if self.centroid_config is not None:
                anch_pt = (
                    self.centroid_config.model_config.head_configs.centroid.confmaps.anchor_part
                )
            if self.confmap_config is not None:
                anch_pt = (
                    self.confmap_config.model_config.head_configs.multi_class_topdown.confmaps.anchor_part
                )
            anchor_ind = (
                self.skeletons[0].node_names.index(anch_pt)
                if anch_pt is not None
                else None
            )

        if self.centroid_config is None:
            centroid_crop_layer = CentroidCrop(
                use_gt_centroids=True,
                crop_hw=(
                    self.preprocess_config.crop_size,
                    self.preprocess_config.crop_size,
                ),
                anchor_ind=anchor_ind,
                return_crops=return_crops,
            )

        else:
            max_stride = self.centroid_config.model_config.backbone_config[
                f"{self.centroid_backbone_type}"
            ]["max_stride"]
            # initialize centroid crop layer
            centroid_crop_layer = CentroidCrop(
                torch_model=self.centroid_model,
                peak_threshold=centroid_peak_threshold,
                output_stride=self.centroid_config.model_config.head_configs.centroid.confmaps.output_stride,
                refinement=self.integral_refinement,
                integral_patch_size=self.integral_patch_size,
                return_confmaps=self.return_confmaps,
                return_crops=return_crops,
                max_instances=self.max_instances,
                max_stride=max_stride,
                input_scale=self.centroid_config.data_config.preprocessing.scale,
                crop_hw=(
                    self.preprocess_config.crop_size,
                    self.preprocess_config.crop_size,
                ),
                use_gt_centroids=False,
            )

        max_stride = self.confmap_config.model_config.backbone_config[
            f"{self.centered_instance_backbone_type}"
        ]["max_stride"]
        instance_peaks_layer = TopDownMultiClassFindInstancePeaks(
            torch_model=self.confmap_model,
            peak_threshold=centered_instance_peak_threshold,
            output_stride=self.confmap_config.model_config.head_configs.multi_class_topdown.confmaps.output_stride,
            refinement=self.integral_refinement,
            integral_patch_size=self.integral_patch_size,
            return_confmaps=self.return_confmaps,
            max_stride=max_stride,
            input_scale=self.confmap_config.data_config.preprocessing.scale,
        )
        centroid_crop_layer.precrop_resize = (
            self.confmap_config.data_config.preprocessing.scale
        )

        if self.centroid_config is None:
            self.instances_key = (
                True  # we need `instances` to get ground-truth centroids
            )

        # Initialize the inference model with centroid and instance peak layers
        self.inference_model = TopDownInferenceModel(
            centroid_crop=centroid_crop_layer, instance_peaks=instance_peaks_layer
        )

    @classmethod
    def from_trained_models(
        cls,
        centroid_ckpt_path: Optional[Text] = None,
        confmap_ckpt_path: Optional[Text] = None,
        backbone_ckpt_path: Optional[str] = None,
        head_ckpt_path: Optional[str] = None,
        peak_threshold: float = 0.2,
        integral_refinement: str = "integral",
        integral_patch_size: int = 5,
        batch_size: int = 4,
        max_instances: Optional[int] = None,
        return_confmaps: bool = False,
        device: str = "cpu",
        preprocess_config: Optional[OmegaConf] = None,
        anchor_part: Optional[str] = None,
        max_stride: int = 16,
    ) -> "TopDownPredictor":
        """Create predictor from saved models.

        Args:
            centroid_ckpt_path: Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
            confmap_ckpt_path: Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
            backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
                from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
            head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                from `backbone_ckpt_path` if provided.)
            peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2
            integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
                If `"integral"`, peaks will be refined with integral regression.
                Default: "integral".
            integral_patch_size: (int) Size of patches to crop around each rough peak as an
                integer scalar. Default: 5.
            batch_size: (int) Number of samples per batch. Default: 4.
            max_instances: (int) Max number of instances to consider from the predictions.
            return_confmaps: (bool) If `True`, predicted confidence maps will be returned
                along with the predicted peak values and points. Default: False.
            device: (str) Device on which torch.Tensor will be allocated. One of the
                ("cpu", "cuda", "mps").
                Default: "cpu"
            preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
            anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
                provided, the anchor part in the `training_config.yaml` is used instead. Default: None.
            max_stride: The maximum stride of the backbone network, as specified in the model's
                `backbone_config`. This determines the downsampling factor applied by the backbone,
                and is used to ensure that input images are padded or resized to be compatible
                with the model's architecture. Default: 16.

        Returns:
            An instance of `TopDownPredictor` with the loaded models.

            One of the two models can be left as `None` to perform inference with ground
            truth data. This will only work with `LabelsReader` as the provider.

        """
        centered_instance_backbone_type = None
        centroid_backbone_type = None
        if centroid_ckpt_path is not None:
            is_sleap_ckpt = False
            if (
                Path(centroid_ckpt_path) / "training_config.yaml"
                in Path(centroid_ckpt_path).iterdir()
            ):
                centroid_config = OmegaConf.load(
                    (Path(centroid_ckpt_path) / "training_config.yaml").as_posix()
                )
            elif (
                Path(centroid_ckpt_path) / "training_config.json"
                in Path(centroid_ckpt_path).iterdir()
            ):
                is_sleap_ckpt = True
                centroid_config = TrainingJobConfig.load_sleap_config(
                    (Path(centroid_ckpt_path) / "training_config.json").as_posix()
                )

            # Load centroid model.
            skeletons = get_skeleton_from_config(centroid_config.data_config.skeletons)

            # check which backbone architecture
            for k, v in centroid_config.model_config.backbone_config.items():
                if v is not None:
                    centroid_backbone_type = k
                    break

            if not is_sleap_ckpt:
                ckpt_path = (Path(centroid_ckpt_path) / "best.ckpt").as_posix()

                centroid_model = CentroidLightningModule.load_from_checkpoint(
                    checkpoint_path=ckpt_path,
                    model_type="centroid",
                    backbone_type=centroid_backbone_type,
                    backbone_config=centroid_config.model_config.backbone_config,
                    head_configs=centroid_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=centroid_config.model_config.init_weights,
                    lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                    online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=centroid_config.trainer_config.optimizer_name,
                    learning_rate=centroid_config.trainer_config.optimizer.lr,
                    amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
                    map_location=device,
                )

            else:
                centroid_converted_model = load_legacy_model(
                    model_dir=f"{centroid_ckpt_path}"
                )
                centroid_model = CentroidLightningModule(
                    model_type="centroid",
                    backbone_type=centroid_backbone_type,
                    backbone_config=centroid_config.model_config.backbone_config,
                    head_configs=centroid_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=centroid_config.model_config.init_weights,
                    lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                    online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=centroid_config.trainer_config.optimizer_name,
                    learning_rate=centroid_config.trainer_config.optimizer.lr,
                    amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
                )
                centroid_model.eval()
                centroid_model.model = centroid_converted_model
                centroid_model.to(device)

            centroid_model.eval()

            if backbone_ckpt_path is not None and head_ckpt_path is not None:
                logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path,
                    map_location=device,
                    weights_only=False,
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".backbone" in k
                }
                centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

            elif backbone_ckpt_path is not None:
                logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path,
                    map_location=device,
                    weights_only=False,
                )
                centroid_model.load_state_dict(
                    ckpt["state_dict"],
                    strict=False,
                    weights_only=False,
                )

            if head_ckpt_path is not None:
                logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
                ckpt = torch.load(
                    head_ckpt_path,
                    map_location=device,
                    weights_only=False,
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".head_layers" in k
                }
                centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

            centroid_model.to(device)

        else:
            centroid_config = None
            centroid_model = None

        if confmap_ckpt_path is not None:
            # Load confmap model.
            is_sleap_ckpt = False
            if (
                Path(confmap_ckpt_path) / "training_config.yaml"
                in Path(confmap_ckpt_path).iterdir()
            ):
                confmap_config = OmegaConf.load(
                    (Path(confmap_ckpt_path) / "training_config.yaml").as_posix()
                )
            elif (
                Path(confmap_ckpt_path) / "training_config.json"
                in Path(confmap_ckpt_path).iterdir()
            ):
                is_sleap_ckpt = True
                confmap_config = TrainingJobConfig.load_sleap_config(
                    (Path(confmap_ckpt_path) / "training_config.json").as_posix()
                )

            # check which backbone architecture
            for k, v in confmap_config.model_config.backbone_config.items():
                if v is not None:
                    centered_instance_backbone_type = k
                    break

            if not is_sleap_ckpt:
                ckpt_path = (Path(confmap_ckpt_path) / "best.ckpt").as_posix()

                confmap_model = TopDownCenteredInstanceMultiClassLightningModule.load_from_checkpoint(
                    checkpoint_path=ckpt_path,
                    model_type="multi_class_topdown",
                    backbone_type=centered_instance_backbone_type,
                    backbone_config=confmap_config.model_config.backbone_config,
                    head_configs=confmap_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=confmap_config.model_config.init_weights,
                    lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                    online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=confmap_config.trainer_config.optimizer_name,
                    learning_rate=confmap_config.trainer_config.optimizer.lr,
                    amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                    map_location=device,
                )
            else:
                confmap_converted_model = load_legacy_model(
                    model_dir=f"{confmap_ckpt_path}"
                )
                confmap_model = TopDownCenteredInstanceMultiClassLightningModule(
                    model_type="multi_class_topdown",
                    backbone_type=centered_instance_backbone_type,
                    backbone_config=confmap_config.model_config.backbone_config,
                    head_configs=confmap_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=confmap_config.model_config.init_weights,
                    lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                    online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=confmap_config.trainer_config.optimizer_name,
                    learning_rate=confmap_config.trainer_config.optimizer.lr,
                    amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                )
                confmap_model.eval()
                confmap_model.model = confmap_converted_model
                confmap_model.to(device)

            confmap_model.eval()
            skeletons = get_skeleton_from_config(confmap_config.data_config.skeletons)

            if backbone_ckpt_path is not None and head_ckpt_path is not None:
                logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path,
                    map_location=device,
                    weights_only=False,
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".backbone" in k
                }
                confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

            elif backbone_ckpt_path is not None:
                logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path,
                    map_location=device,
                    weights_only=False,
                )
                confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

            if head_ckpt_path is not None:
                logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
                ckpt = torch.load(
                    head_ckpt_path,
                    map_location=device,
                    weights_only=False,
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".head_layers" in k
                }
                confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

            confmap_model.to(device)

        else:
            confmap_config = None
            confmap_model = None

        if centroid_config is None and confmap_config is None:
            message = (
                "Both a centroid and a confidence map model must be provided to "
                "initialize a TopDownMultiClassPredictor."
            )
            logger.error(message)
            raise ValueError(message)

        if centroid_config is not None:
            preprocess_config["scale"] = (
                centroid_config.data_config.preprocessing.scale
                if preprocess_config["scale"] is None
                else preprocess_config["scale"]
            )
            preprocess_config["ensure_rgb"] = (
                centroid_config.data_config.preprocessing.ensure_rgb
                if preprocess_config["ensure_rgb"] is None
                else preprocess_config["ensure_rgb"]
            )
            preprocess_config["ensure_grayscale"] = (
                centroid_config.data_config.preprocessing.ensure_grayscale
                if preprocess_config["ensure_grayscale"] is None
                else preprocess_config["ensure_grayscale"]
            )
            preprocess_config["max_height"] = (
                centroid_config.data_config.preprocessing.max_height
                if preprocess_config["max_height"] is None
                else preprocess_config["max_height"]
            )
            preprocess_config["max_width"] = (
                centroid_config.data_config.preprocessing.max_width
                if preprocess_config["max_width"] is None
                else preprocess_config["max_width"]
            )

        else:
            preprocess_config["scale"] = (
                confmap_config.data_config.preprocessing.scale
                if preprocess_config["scale"] is None
                else preprocess_config["scale"]
            )
            preprocess_config["ensure_rgb"] = (
                confmap_config.data_config.preprocessing.ensure_rgb
                if preprocess_config["ensure_rgb"] is None
                else preprocess_config["ensure_rgb"]
            )
            preprocess_config["ensure_grayscale"] = (
                confmap_config.data_config.preprocessing.ensure_grayscale
                if preprocess_config["ensure_grayscale"] is None
                else preprocess_config["ensure_grayscale"]
            )
            preprocess_config["max_height"] = (
                confmap_config.data_config.preprocessing.max_height
                if preprocess_config["max_height"] is None
                else preprocess_config["max_height"]
            )
            preprocess_config["max_width"] = (
                confmap_config.data_config.preprocessing.max_width
                if preprocess_config["max_width"] is None
                else preprocess_config["max_width"]
            )

        preprocess_config["crop_size"] = (
            confmap_config.data_config.preprocessing.crop_size
            if preprocess_config["crop_size"] is None and confmap_config is not None
            else preprocess_config["crop_size"]
        )

        # create an instance of TopDownPredictor class
        obj = cls(
            centroid_config=centroid_config,
            centroid_model=centroid_model,
            confmap_config=confmap_config,
            confmap_model=confmap_model,
            centroid_backbone_type=centroid_backbone_type,
            centered_instance_backbone_type=centered_instance_backbone_type,
            skeletons=skeletons,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            max_instances=max_instances,
            return_confmaps=return_confmaps,
            device=device,
            preprocess_config=preprocess_config,
            anchor_part=anchor_part,
            max_stride=(
                centroid_config.model_config.backbone_config[
                    f"{centroid_backbone_type}"
                ]["max_stride"]
                if centroid_config is not None
                else confmap_config.model_config.backbone_config[
                    f"{centered_instance_backbone_type}"
                ]["max_stride"]
            ),
        )

        obj._initialize_inference_model()
        return obj

    def make_pipeline(
        self,
        inference_object: Union[str, Path, sio.Labels, sio.Video],
        queue_maxsize: int = 8,
        frames: Optional[list] = None,
        only_labeled_frames: bool = False,
        only_suggested_frames: bool = False,
        video_index: Optional[int] = None,
        video_dataset: Optional[str] = None,
        video_input_format: str = "channels_last",
    ):
        """Make a data loading pipeline.

        Args:
            inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
            queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
            frames: (list) List of frames indices. If `None`, all frames in the video are used. Default: None.
            only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
            only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
            video_index: (int) Integer index of video in .slp file to predict on. To be used
                with an .slp path as an alternative to specifying the video path.
            video_dataset: (str) The dataset for HDF5 videos.
            video_input_format: (str) The input_format for HDF5 videos.

        Returns:
            This method initiates the reader class (doesn't return a pipeline) and the
            Thread is started in Predictor._predict_generator() method.
        """
        if isinstance(inference_object, str) or isinstance(inference_object, Path):
            inference_object = (
                sio.load_slp(inference_object)
                if inference_object.endswith(".slp")
                else sio.load_video(
                    inference_object,
                    dataset=video_dataset,
                    input_format=video_input_format,
                )
            )

        # LabelsReader provider
        if isinstance(inference_object, sio.Labels) and video_index is None:
            provider = LabelsReader

            self.preprocess = False

            frame_buffer = Queue(maxsize=queue_maxsize)

            self.pipeline = provider(
                labels=inference_object,
                frame_buffer=frame_buffer,
                instances_key=self.instances_key,
                only_labeled_frames=only_labeled_frames,
                only_suggested_frames=only_suggested_frames,
            )
            self.videos = self.pipeline.labels.videos

        else:
            provider = VideoReader
            if self.centroid_config is None:
                message = (
                    "Ground truth data was not detected... "
                    "Please load both models when predicting on non-ground-truth data."
                )
                logger.error(message)
                raise ValueError(message)

            self.preprocess = False

            if isinstance(inference_object, sio.Labels) and video_index is not None:
                labels = inference_object
                self.pipeline = provider.from_video(
                    video=labels.videos[video_index],
                    queue_maxsize=queue_maxsize,
                    frames=frames,
                )

            else:  # for mp4 or hdf5 videos
                frame_buffer = Queue(maxsize=queue_maxsize)
                self.pipeline = provider(
                    video=inference_object,
                    frame_buffer=frame_buffer,
                    frames=frames,
                )

            self.videos = [self.pipeline.video]

    def _make_labeled_frames_from_generator(
        self,
        generator: Iterator[Dict[str, np.ndarray]],
    ) -> sio.Labels:
        """Create labeled frames from a generator that yields inference results.

        This method converts pure arrays into SLEAP-specific data structures and assigns
        tracks to the predicted instances if tracker is specified.

        Args:
            generator: A generator that returns dictionaries with inference results.
                This should return dictionaries with keys `"instance_image"`, `"video_idx"`,
                `"frame_idx"`, `"pred_instance_peaks"`, `"pred_peak_values"`, and
                `"centroid_val"`. This can be created using the `_predict_generator()`
                method.

        Returns:
            A `sio.Labels` object with `sio.PredictedInstance`s created from
            arrays returned from the inference result generator.
        """
        # open video backend for tracking
        for video in self.videos:
            if not video.open_backend:
                video.open()

        preds = defaultdict(list)
        predicted_frames = []
        skeleton_idx = 0

        tracks = [
            sio.Track(name=x)
            for x in self.confmap_config.model_config.head_configs.multi_class_topdown.class_vectors.classes
        ]

        # Loop through each predicted instance.
        for ex in generator:
            # loop through each sample in a batch
            for (
                video_idx,
                frame_idx,
                bbox,
                pred_instances,
                pred_values,
                centroid_val,
                org_size,
                class_ind,
                instance_score,
            ) in zip(
                ex["video_idx"],
                ex["frame_idx"],
                ex["instance_bbox"],
                ex["pred_instance_peaks"],
                ex["pred_peak_values"],
                ex["centroid_val"],
                ex["orig_size"],
                ex["pred_class_inds"],
                ex["instance_scores"],
            ):
                if np.isnan(pred_instances).all():
                    continue
                pred_instances = pred_instances + bbox.squeeze(axis=0)[0, :]

                track = None
                if tracks is not None:
                    track = tracks[class_ind]

                preds[(int(video_idx), int(frame_idx))].append(
                    sio.PredictedInstance.from_numpy(
                        points_data=pred_instances,
                        skeleton=self.skeletons[skeleton_idx],
                        point_scores=pred_values,
                        score=centroid_val,
                        track=track,
                        tracking_score=instance_score,
                    )
                )
        for key, inst in preds.items():
            # Create list of LabeledFrames.
            video_idx, frame_idx = key
            lf = sio.LabeledFrame(
                video=self.videos[video_idx],
                frame_idx=frame_idx,
                instances=inst,
            )

            predicted_frames.append(lf)

        pred_labels = sio.Labels(
            videos=self.videos,
            skeletons=self.skeletons,
            labeled_frames=predicted_frames,
        )
        return pred_labels

from_trained_models(centroid_ckpt_path=None, confmap_ckpt_path=None, backbone_ckpt_path=None, head_ckpt_path=None, peak_threshold=0.2, integral_refinement='integral', integral_patch_size=5, batch_size=4, max_instances=None, return_confmaps=False, device='cpu', preprocess_config=None, anchor_part=None, max_stride=16) classmethod

Create predictor from saved models.

Parameters:

Name Type Description Default
centroid_ckpt_path Optional[Text]

Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).

None
confmap_ckpt_path Optional[Text]

Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).

None
backbone_ckpt_path Optional[str]

(str) To run inference on any .ckpt other than best.ckpt from the model_paths dir, the path to the .ckpt file should be passed here.

None
head_ckpt_path Optional[str]

(str) Path to .ckpt file if a different set of head layer weights are to be used. If None, the best.ckpt from model_paths dir is used (or the ckpt from backbone_ckpt_path if provided.)

None
peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

0.2
integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

'integral'
integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

5
batch_size int

(int) Number of samples per batch. Default: 4.

4
max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

None
return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

False
device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

'cpu'
preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

None
anchor_part Optional[str]

(str) The name of the node to use as the anchor for the centroid. If not provided, the anchor part in the training_config.yaml is used instead. Default: None.

None
max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

16

Returns:

Type Description
TopDownPredictor

An instance of TopDownPredictor with the loaded models.

One of the two models can be left as None to perform inference with ground truth data. This will only work with LabelsReader as the provider.

Source code in sleap_nn/inference/predictors.py
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
@classmethod
def from_trained_models(
    cls,
    centroid_ckpt_path: Optional[Text] = None,
    confmap_ckpt_path: Optional[Text] = None,
    backbone_ckpt_path: Optional[str] = None,
    head_ckpt_path: Optional[str] = None,
    peak_threshold: float = 0.2,
    integral_refinement: str = "integral",
    integral_patch_size: int = 5,
    batch_size: int = 4,
    max_instances: Optional[int] = None,
    return_confmaps: bool = False,
    device: str = "cpu",
    preprocess_config: Optional[OmegaConf] = None,
    anchor_part: Optional[str] = None,
    max_stride: int = 16,
) -> "TopDownPredictor":
    """Create predictor from saved models.

    Args:
        centroid_ckpt_path: Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
        confmap_ckpt_path: Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
        backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
            from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
        head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
            are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
            from `backbone_ckpt_path` if provided.)
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
            provided, the anchor part in the `training_config.yaml` is used instead. Default: None.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    Returns:
        An instance of `TopDownPredictor` with the loaded models.

        One of the two models can be left as `None` to perform inference with ground
        truth data. This will only work with `LabelsReader` as the provider.

    """
    centered_instance_backbone_type = None
    centroid_backbone_type = None
    if centroid_ckpt_path is not None:
        is_sleap_ckpt = False
        if (
            Path(centroid_ckpt_path) / "training_config.yaml"
            in Path(centroid_ckpt_path).iterdir()
        ):
            centroid_config = OmegaConf.load(
                (Path(centroid_ckpt_path) / "training_config.yaml").as_posix()
            )
        elif (
            Path(centroid_ckpt_path) / "training_config.json"
            in Path(centroid_ckpt_path).iterdir()
        ):
            is_sleap_ckpt = True
            centroid_config = TrainingJobConfig.load_sleap_config(
                (Path(centroid_ckpt_path) / "training_config.json").as_posix()
            )

        # Load centroid model.
        skeletons = get_skeleton_from_config(centroid_config.data_config.skeletons)

        # check which backbone architecture
        for k, v in centroid_config.model_config.backbone_config.items():
            if v is not None:
                centroid_backbone_type = k
                break

        if not is_sleap_ckpt:
            ckpt_path = (Path(centroid_ckpt_path) / "best.ckpt").as_posix()

            centroid_model = CentroidLightningModule.load_from_checkpoint(
                checkpoint_path=ckpt_path,
                model_type="centroid",
                backbone_type=centroid_backbone_type,
                backbone_config=centroid_config.model_config.backbone_config,
                head_configs=centroid_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=centroid_config.model_config.init_weights,
                lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=centroid_config.trainer_config.optimizer_name,
                learning_rate=centroid_config.trainer_config.optimizer.lr,
                amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
                map_location=device,
            )

        else:
            centroid_converted_model = load_legacy_model(
                model_dir=f"{centroid_ckpt_path}"
            )
            centroid_model = CentroidLightningModule(
                model_type="centroid",
                backbone_type=centroid_backbone_type,
                backbone_config=centroid_config.model_config.backbone_config,
                head_configs=centroid_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=centroid_config.model_config.init_weights,
                lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=centroid_config.trainer_config.optimizer_name,
                learning_rate=centroid_config.trainer_config.optimizer.lr,
                amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
            )
            centroid_model.eval()
            centroid_model.model = centroid_converted_model
            centroid_model.to(device)

        centroid_model.eval()

        if backbone_ckpt_path is not None and head_ckpt_path is not None:
            logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".backbone" in k
            }
            centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

        elif backbone_ckpt_path is not None:
            logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            centroid_model.load_state_dict(
                ckpt["state_dict"],
                strict=False,
                weights_only=False,
            )

        if head_ckpt_path is not None:
            logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
            ckpt = torch.load(
                head_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".head_layers" in k
            }
            centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

        centroid_model.to(device)

    else:
        centroid_config = None
        centroid_model = None

    if confmap_ckpt_path is not None:
        # Load confmap model.
        is_sleap_ckpt = False
        if (
            Path(confmap_ckpt_path) / "training_config.yaml"
            in Path(confmap_ckpt_path).iterdir()
        ):
            confmap_config = OmegaConf.load(
                (Path(confmap_ckpt_path) / "training_config.yaml").as_posix()
            )
        elif (
            Path(confmap_ckpt_path) / "training_config.json"
            in Path(confmap_ckpt_path).iterdir()
        ):
            is_sleap_ckpt = True
            confmap_config = TrainingJobConfig.load_sleap_config(
                (Path(confmap_ckpt_path) / "training_config.json").as_posix()
            )

        # check which backbone architecture
        for k, v in confmap_config.model_config.backbone_config.items():
            if v is not None:
                centered_instance_backbone_type = k
                break

        if not is_sleap_ckpt:
            ckpt_path = (Path(confmap_ckpt_path) / "best.ckpt").as_posix()

            confmap_model = TopDownCenteredInstanceMultiClassLightningModule.load_from_checkpoint(
                checkpoint_path=ckpt_path,
                model_type="multi_class_topdown",
                backbone_type=centered_instance_backbone_type,
                backbone_config=confmap_config.model_config.backbone_config,
                head_configs=confmap_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=confmap_config.model_config.init_weights,
                lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=confmap_config.trainer_config.optimizer_name,
                learning_rate=confmap_config.trainer_config.optimizer.lr,
                amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                map_location=device,
            )
        else:
            confmap_converted_model = load_legacy_model(
                model_dir=f"{confmap_ckpt_path}"
            )
            confmap_model = TopDownCenteredInstanceMultiClassLightningModule(
                model_type="multi_class_topdown",
                backbone_type=centered_instance_backbone_type,
                backbone_config=confmap_config.model_config.backbone_config,
                head_configs=confmap_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=confmap_config.model_config.init_weights,
                lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=confmap_config.trainer_config.optimizer_name,
                learning_rate=confmap_config.trainer_config.optimizer.lr,
                amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
            )
            confmap_model.eval()
            confmap_model.model = confmap_converted_model
            confmap_model.to(device)

        confmap_model.eval()
        skeletons = get_skeleton_from_config(confmap_config.data_config.skeletons)

        if backbone_ckpt_path is not None and head_ckpt_path is not None:
            logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".backbone" in k
            }
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        elif backbone_ckpt_path is not None:
            logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        if head_ckpt_path is not None:
            logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
            ckpt = torch.load(
                head_ckpt_path,
                map_location=device,
                weights_only=False,
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".head_layers" in k
            }
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        confmap_model.to(device)

    else:
        confmap_config = None
        confmap_model = None

    if centroid_config is None and confmap_config is None:
        message = (
            "Both a centroid and a confidence map model must be provided to "
            "initialize a TopDownMultiClassPredictor."
        )
        logger.error(message)
        raise ValueError(message)

    if centroid_config is not None:
        preprocess_config["scale"] = (
            centroid_config.data_config.preprocessing.scale
            if preprocess_config["scale"] is None
            else preprocess_config["scale"]
        )
        preprocess_config["ensure_rgb"] = (
            centroid_config.data_config.preprocessing.ensure_rgb
            if preprocess_config["ensure_rgb"] is None
            else preprocess_config["ensure_rgb"]
        )
        preprocess_config["ensure_grayscale"] = (
            centroid_config.data_config.preprocessing.ensure_grayscale
            if preprocess_config["ensure_grayscale"] is None
            else preprocess_config["ensure_grayscale"]
        )
        preprocess_config["max_height"] = (
            centroid_config.data_config.preprocessing.max_height
            if preprocess_config["max_height"] is None
            else preprocess_config["max_height"]
        )
        preprocess_config["max_width"] = (
            centroid_config.data_config.preprocessing.max_width
            if preprocess_config["max_width"] is None
            else preprocess_config["max_width"]
        )

    else:
        preprocess_config["scale"] = (
            confmap_config.data_config.preprocessing.scale
            if preprocess_config["scale"] is None
            else preprocess_config["scale"]
        )
        preprocess_config["ensure_rgb"] = (
            confmap_config.data_config.preprocessing.ensure_rgb
            if preprocess_config["ensure_rgb"] is None
            else preprocess_config["ensure_rgb"]
        )
        preprocess_config["ensure_grayscale"] = (
            confmap_config.data_config.preprocessing.ensure_grayscale
            if preprocess_config["ensure_grayscale"] is None
            else preprocess_config["ensure_grayscale"]
        )
        preprocess_config["max_height"] = (
            confmap_config.data_config.preprocessing.max_height
            if preprocess_config["max_height"] is None
            else preprocess_config["max_height"]
        )
        preprocess_config["max_width"] = (
            confmap_config.data_config.preprocessing.max_width
            if preprocess_config["max_width"] is None
            else preprocess_config["max_width"]
        )

    preprocess_config["crop_size"] = (
        confmap_config.data_config.preprocessing.crop_size
        if preprocess_config["crop_size"] is None and confmap_config is not None
        else preprocess_config["crop_size"]
    )

    # create an instance of TopDownPredictor class
    obj = cls(
        centroid_config=centroid_config,
        centroid_model=centroid_model,
        confmap_config=confmap_config,
        confmap_model=confmap_model,
        centroid_backbone_type=centroid_backbone_type,
        centered_instance_backbone_type=centered_instance_backbone_type,
        skeletons=skeletons,
        peak_threshold=peak_threshold,
        integral_refinement=integral_refinement,
        integral_patch_size=integral_patch_size,
        batch_size=batch_size,
        max_instances=max_instances,
        return_confmaps=return_confmaps,
        device=device,
        preprocess_config=preprocess_config,
        anchor_part=anchor_part,
        max_stride=(
            centroid_config.model_config.backbone_config[
                f"{centroid_backbone_type}"
            ]["max_stride"]
            if centroid_config is not None
            else confmap_config.model_config.backbone_config[
                f"{centered_instance_backbone_type}"
            ]["max_stride"]
        ),
    )

    obj._initialize_inference_model()
    return obj

make_pipeline(inference_object, queue_maxsize=8, frames=None, only_labeled_frames=False, only_suggested_frames=False, video_index=None, video_dataset=None, video_input_format='channels_last')

Make a data loading pipeline.

Parameters:

Name Type Description Default
inference_object Union[str, Path, Labels, Video]

(str) Path to .slp file or .mp4 or sio.Labels or sio.Video to run inference on.

required
queue_maxsize int

(int) Maximum size of the frame buffer queue. Default: 8.

8
frames Optional[list]

(list) List of frames indices. If None, all frames in the video are used. Default: None.

None
only_labeled_frames bool

(bool) True if inference should be run only on user-labeled frames. Default: False.

False
only_suggested_frames bool

(bool) True if inference should be run only on unlabeled suggested frames. Default: False.

False
video_index Optional[int]

(int) Integer index of video in .slp file to predict on. To be used with an .slp path as an alternative to specifying the video path.

None
video_dataset Optional[str]

(str) The dataset for HDF5 videos.

None
video_input_format str

(str) The input_format for HDF5 videos.

'channels_last'

Returns:

Type Description

This method initiates the reader class (doesn't return a pipeline) and the Thread is started in Predictor._predict_generator() method.

Source code in sleap_nn/inference/predictors.py
def make_pipeline(
    self,
    inference_object: Union[str, Path, sio.Labels, sio.Video],
    queue_maxsize: int = 8,
    frames: Optional[list] = None,
    only_labeled_frames: bool = False,
    only_suggested_frames: bool = False,
    video_index: Optional[int] = None,
    video_dataset: Optional[str] = None,
    video_input_format: str = "channels_last",
):
    """Make a data loading pipeline.

    Args:
        inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
        queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
        frames: (list) List of frames indices. If `None`, all frames in the video are used. Default: None.
        only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
        only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
        video_index: (int) Integer index of video in .slp file to predict on. To be used
            with an .slp path as an alternative to specifying the video path.
        video_dataset: (str) The dataset for HDF5 videos.
        video_input_format: (str) The input_format for HDF5 videos.

    Returns:
        This method initiates the reader class (doesn't return a pipeline) and the
        Thread is started in Predictor._predict_generator() method.
    """
    if isinstance(inference_object, str) or isinstance(inference_object, Path):
        inference_object = (
            sio.load_slp(inference_object)
            if inference_object.endswith(".slp")
            else sio.load_video(
                inference_object,
                dataset=video_dataset,
                input_format=video_input_format,
            )
        )

    # LabelsReader provider
    if isinstance(inference_object, sio.Labels) and video_index is None:
        provider = LabelsReader

        self.preprocess = False

        frame_buffer = Queue(maxsize=queue_maxsize)

        self.pipeline = provider(
            labels=inference_object,
            frame_buffer=frame_buffer,
            instances_key=self.instances_key,
            only_labeled_frames=only_labeled_frames,
            only_suggested_frames=only_suggested_frames,
        )
        self.videos = self.pipeline.labels.videos

    else:
        provider = VideoReader
        if self.centroid_config is None:
            message = (
                "Ground truth data was not detected... "
                "Please load both models when predicting on non-ground-truth data."
            )
            logger.error(message)
            raise ValueError(message)

        self.preprocess = False

        if isinstance(inference_object, sio.Labels) and video_index is not None:
            labels = inference_object
            self.pipeline = provider.from_video(
                video=labels.videos[video_index],
                queue_maxsize=queue_maxsize,
                frames=frames,
            )

        else:  # for mp4 or hdf5 videos
            frame_buffer = Queue(maxsize=queue_maxsize)
            self.pipeline = provider(
                video=inference_object,
                frame_buffer=frame_buffer,
                frames=frames,
            )

        self.videos = [self.pipeline.video]

TopDownPredictor

Bases: Predictor

Top-down multi-instance predictor.

This high-level class handles initialization, preprocessing and predicting using a trained TopDown SLEAP-NN model. This should be initialized using the from_trained_models() constructor.

Attributes:

Name Type Description
centroid_config Optional[OmegaConf]

A Dictionary with the configs used for training the centroid model.

confmap_config Optional[OmegaConf]

A Dictionary with the configs used for training the centered-instance model

centroid_model Optional[LightningModule]

A LightningModule instance created from the trained weights for centroid model.

confmap_model Optional[LightningModule]

A LightningModule instance created from the trained weights for centered-instance model.

centroid_backbone_type Optional[str]

Backbone model. One of unet, convnext and swint.

centered_instance_backbone_type Optional[str]

Backbone model. One of unet, convnext and swint.

videos Optional[List[Video]]

List of sio.Video objects for creating the sio.Labels object from the output predictions.

skeletons Optional[List[Skeleton]]

List of sio.Skeleton objects for creating sio.Labels object from the output predictions.

peak_threshold Union[float, List[float]]

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2. This can also be List[float] for topdown centroid and centered-instance model, where the first element corresponds to centroid model peak finding threshold and the second element is for centered-instance model peak finding.

integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

batch_size int

(int) Number of samples per batch. Default: 4.

max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

tracker Optional[Tracker]

A sleap_nn.tracking.Tracker that will be called to associate detections over time. Predicted instances will not be assigned to tracks if if this is None.

anchor_part Optional[str]

(str) The name of the node to use as the anchor for the centroid. If not provided, the anchor part in the training_config.yaml is used instead. Default: None.

max_stride int

The maximum stride of the backbone network, as specified in the model's backbone_config. This determines the downsampling factor applied by the backbone, and is used to ensure that input images are padded or resized to be compatible with the model's architecture. Default: 16.

Methods:

Name Description
from_trained_models

Create predictor from saved models.

make_pipeline

Make a data loading pipeline.

Source code in sleap_nn/inference/predictors.py
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
@attrs.define
class TopDownPredictor(Predictor):
    """Top-down multi-instance predictor.

    This high-level class handles initialization, preprocessing and predicting using a
    trained TopDown SLEAP-NN model. This should be initialized using the
    `from_trained_models()` constructor.

    Attributes:
        centroid_config: A Dictionary with the configs used for training the centroid model.
        confmap_config: A Dictionary with the configs used for training the
                        centered-instance model
        centroid_model: A LightningModule instance created from the trained weights
                        for centroid model.
        confmap_model: A LightningModule instance created from the trained weights
                       for centered-instance model.
        centroid_backbone_type: Backbone model. One of `unet`, `convnext` and `swint`.
        centered_instance_backbone_type: Backbone model. One of `unet`, `convnext` and `swint`.
        videos: List of `sio.Video` objects for creating the `sio.Labels` object from
                        the output predictions.
        skeletons: List of `sio.Skeleton` objects for creating `sio.Labels` object from
                        the output predictions.
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2. This can also be `List[float]` for topdown
                centroid and centered-instance model, where the first element corresponds
                to centroid model peak finding threshold and the second element is for
                centered-instance model peak finding.
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        tracker: A `sleap_nn.tracking.Tracker` that will be called to associate
            detections over time. Predicted instances will not be assigned to tracks if
            if this is `None`.
        anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
            provided, the anchor part in the `training_config.yaml` is used instead. Default: None.
        max_stride: The maximum stride of the backbone network, as specified in the model's
            `backbone_config`. This determines the downsampling factor applied by the backbone,
            and is used to ensure that input images are padded or resized to be compatible
            with the model's architecture. Default: 16.

    """

    centroid_config: Optional[OmegaConf] = None
    confmap_config: Optional[OmegaConf] = None
    centroid_model: Optional[L.LightningModule] = None
    confmap_model: Optional[L.LightningModule] = None
    centroid_backbone_type: Optional[str] = None
    centered_instance_backbone_type: Optional[str] = None
    videos: Optional[List[sio.Video]] = None
    skeletons: Optional[List[sio.Skeleton]] = None
    peak_threshold: Union[float, List[float]] = 0.2
    integral_refinement: str = "integral"
    integral_patch_size: int = 5
    batch_size: int = 4
    max_instances: Optional[int] = None
    return_confmaps: bool = False
    device: str = "cpu"
    preprocess_config: Optional[OmegaConf] = None
    tracker: Optional[Tracker] = None
    anchor_part: Optional[str] = None
    max_stride: int = 16

    def _initialize_inference_model(self):
        """Initialize the inference model from the trained models and configuration."""
        # Create an instance of CentroidLayer if centroid_config is not None
        return_crops = False
        # if both centroid and centered-instance model are provided, set return crops to True
        if self.confmap_model:
            return_crops = True
        if isinstance(self.peak_threshold, list):
            centroid_peak_threshold = self.peak_threshold[0]
            centered_instance_peak_threshold = self.peak_threshold[1]
        else:
            centroid_peak_threshold = self.peak_threshold
            centered_instance_peak_threshold = self.peak_threshold

        if self.anchor_part is not None:
            anchor_ind = self.skeletons[0].node_names.index(self.anchor_part)
        else:
            anch_pt = None
            if self.centroid_config is not None:
                anch_pt = (
                    self.centroid_config.model_config.head_configs.centroid.confmaps.anchor_part
                )
            if self.confmap_config is not None:
                anch_pt = (
                    self.confmap_config.model_config.head_configs.centered_instance.confmaps.anchor_part
                )
            anchor_ind = (
                self.skeletons[0].node_names.index(anch_pt)
                if anch_pt is not None
                else None
            )

        if self.centroid_config is None:
            centroid_crop_layer = CentroidCrop(
                use_gt_centroids=True,
                crop_hw=(
                    self.preprocess_config.crop_size,
                    self.preprocess_config.crop_size,
                ),
                anchor_ind=anchor_ind,
                return_crops=return_crops,
            )

        else:
            max_stride = self.centroid_config.model_config.backbone_config[
                f"{self.centroid_backbone_type}"
            ]["max_stride"]
            # initialize centroid crop layer
            centroid_crop_layer = CentroidCrop(
                torch_model=self.centroid_model,
                peak_threshold=centroid_peak_threshold,
                output_stride=self.centroid_config.model_config.head_configs.centroid.confmaps.output_stride,
                refinement=self.integral_refinement,
                integral_patch_size=self.integral_patch_size,
                return_confmaps=self.return_confmaps,
                return_crops=return_crops,
                max_instances=self.max_instances,
                max_stride=max_stride,
                input_scale=self.centroid_config.data_config.preprocessing.scale,
                crop_hw=(
                    self.preprocess_config.crop_size,
                    self.preprocess_config.crop_size,
                ),
                use_gt_centroids=False,
            )

        # Create an instance of FindInstancePeaks layer if confmap_config is not None
        if self.confmap_config is None:
            instance_peaks_layer = FindInstancePeaksGroundTruth()
            self.instances_key = True
        else:

            max_stride = self.confmap_config.model_config.backbone_config[
                f"{self.centered_instance_backbone_type}"
            ]["max_stride"]
            instance_peaks_layer = FindInstancePeaks(
                torch_model=self.confmap_model,
                peak_threshold=centered_instance_peak_threshold,
                output_stride=self.confmap_config.model_config.head_configs.centered_instance.confmaps.output_stride,
                refinement=self.integral_refinement,
                integral_patch_size=self.integral_patch_size,
                return_confmaps=self.return_confmaps,
                max_stride=max_stride,
                input_scale=self.confmap_config.data_config.preprocessing.scale,
            )
            centroid_crop_layer.precrop_resize = (
                self.confmap_config.data_config.preprocessing.scale
            )

        if self.centroid_config is None and self.confmap_config is not None:
            self.instances_key = (
                True  # we need `instances` to get ground-truth centroids
            )

        # Initialize the inference model with centroid and instance peak layers
        self.inference_model = TopDownInferenceModel(
            centroid_crop=centroid_crop_layer, instance_peaks=instance_peaks_layer
        )

    @classmethod
    def from_trained_models(
        cls,
        centroid_ckpt_path: Optional[Text] = None,
        confmap_ckpt_path: Optional[Text] = None,
        backbone_ckpt_path: Optional[str] = None,
        head_ckpt_path: Optional[str] = None,
        peak_threshold: float = 0.2,
        integral_refinement: str = "integral",
        integral_patch_size: int = 5,
        batch_size: int = 4,
        max_instances: Optional[int] = None,
        return_confmaps: bool = False,
        device: str = "cpu",
        preprocess_config: Optional[OmegaConf] = None,
        anchor_part: Optional[str] = None,
    ) -> "TopDownPredictor":
        """Create predictor from saved models.

        Args:
            centroid_ckpt_path: Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
            confmap_ckpt_path: Path to a centered-instance ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
            backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
                from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
            head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
                are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
                from `backbone_ckpt_path` if provided.)
            peak_threshold: (float) Minimum confidence threshold. Peaks with values below
                this will be ignored. Default: 0.2
            integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
                If `"integral"`, peaks will be refined with integral regression.
                Default: "integral".
            integral_patch_size: (int) Size of patches to crop around each rough peak as an
                integer scalar. Default: 5.
            batch_size: (int) Number of samples per batch. Default: 4.
            max_instances: (int) Max number of instances to consider from the predictions.
            return_confmaps: (bool) If `True`, predicted confidence maps will be returned
                along with the predicted peak values and points. Default: False.
            device: (str) Device on which torch.Tensor will be allocated. One of the
                ("cpu", "cuda", "mps").
                Default: "cpu"
            preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
                in the `data_config.preprocessing` section.
            anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
                provided, the anchor part in the `training_config.yaml` is used instead. Default: None.

        Returns:
            An instance of `TopDownPredictor` with the loaded models.

            One of the two models can be left as `None` to perform inference with ground
            truth data. This will only work with `LabelsReader` as the provider.

        """
        centered_instance_backbone_type = None
        centroid_backbone_type = None
        if centroid_ckpt_path is not None:
            is_sleap_ckpt = False
            # Load centroid model.
            if (
                Path(centroid_ckpt_path) / "training_config.yaml"
                in Path(centroid_ckpt_path).iterdir()
            ):
                centroid_config = OmegaConf.load(
                    (Path(centroid_ckpt_path) / "training_config.yaml").as_posix()
                )
            elif (
                Path(centroid_ckpt_path) / "training_config.json"
                in Path(centroid_ckpt_path).iterdir()
            ):
                is_sleap_ckpt = True
                centroid_config = TrainingJobConfig.load_sleap_config(
                    (Path(centroid_ckpt_path) / "training_config.json").as_posix()
                )

            skeletons = get_skeleton_from_config(centroid_config.data_config.skeletons)

            # check which backbone architecture
            for k, v in centroid_config.model_config.backbone_config.items():
                if v is not None:
                    centroid_backbone_type = k
                    break

            if not is_sleap_ckpt:
                ckpt_path = (Path(centroid_ckpt_path) / "best.ckpt").as_posix()
                centroid_model = CentroidLightningModule.load_from_checkpoint(
                    checkpoint_path=ckpt_path,
                    model_type="centroid",
                    backbone_type=centroid_backbone_type,
                    backbone_config=centroid_config.model_config.backbone_config,
                    head_configs=centroid_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=centroid_config.model_config.init_weights,
                    lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                    online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=centroid_config.trainer_config.optimizer_name,
                    learning_rate=centroid_config.trainer_config.optimizer.lr,
                    amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
                    map_location=device,
                )
            else:
                # Load the converted model
                centroid_converted_model = load_legacy_model(
                    model_dir=f"{centroid_ckpt_path}"
                )
                centroid_model = CentroidLightningModule(
                    backbone_type=centroid_backbone_type,
                    model_type="centroid",
                    backbone_config=centroid_config.model_config.backbone_config,
                    head_configs=centroid_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=centroid_config.model_config.init_weights,
                    lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                    online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=centroid_config.trainer_config.optimizer_name,
                    learning_rate=centroid_config.trainer_config.optimizer.lr,
                    amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
                )

                centroid_model.eval()
                centroid_model.model = centroid_converted_model
                centroid_model.to(device)

            centroid_model.eval()

            if backbone_ckpt_path is not None and head_ckpt_path is not None:
                logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path, map_location=device, weights_only=False
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".backbone" in k
                }
                centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

            elif backbone_ckpt_path is not None:
                logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path, map_location=device, weights_only=False
                )
                centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

            if head_ckpt_path is not None:
                logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
                ckpt = torch.load(
                    head_ckpt_path, map_location=device, weights_only=False
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".head_layers" in k
                }
                centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

            centroid_model.to(device)

        else:
            centroid_config = None
            centroid_model = None

        if confmap_ckpt_path is not None:
            is_sleap_ckpt = False
            # Load confmap model.
            if (
                Path(confmap_ckpt_path) / "training_config.yaml"
                in Path(confmap_ckpt_path).iterdir()
            ):
                confmap_config = OmegaConf.load(
                    (Path(confmap_ckpt_path) / "training_config.yaml").as_posix()
                )
            elif (
                Path(confmap_ckpt_path) / "training_config.json"
                in Path(confmap_ckpt_path).iterdir()
            ):
                is_sleap_ckpt = True
                confmap_config = TrainingJobConfig.load_sleap_config(
                    (Path(confmap_ckpt_path) / "training_config.json").as_posix()
                )

            skeletons = get_skeleton_from_config(confmap_config.data_config.skeletons)

            # check which backbone architecture
            for k, v in confmap_config.model_config.backbone_config.items():
                if v is not None:
                    centered_instance_backbone_type = k
                    break

            if not is_sleap_ckpt:
                ckpt_path = (Path(confmap_ckpt_path) / "best.ckpt").as_posix()
                confmap_model = TopDownCenteredInstanceLightningModule.load_from_checkpoint(
                    checkpoint_path=ckpt_path,
                    model_type="centered_instance",
                    backbone_config=confmap_config.model_config.backbone_config,
                    head_configs=confmap_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=confmap_config.model_config.init_weights,
                    lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                    online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=confmap_config.trainer_config.optimizer_name,
                    learning_rate=confmap_config.trainer_config.optimizer.lr,
                    amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                    backbone_type=centered_instance_backbone_type,
                    map_location=device,
                )
            else:
                # Load the converted model
                confmap_converted_model = load_legacy_model(
                    model_dir=f"{confmap_ckpt_path}"
                )

                # Create a new LightningModule with the converted model
                confmap_model = TopDownCenteredInstanceLightningModule(
                    backbone_type=centered_instance_backbone_type,
                    model_type="centered_instance",
                    backbone_config=confmap_config.model_config.backbone_config,
                    head_configs=confmap_config.model_config.head_configs,
                    pretrained_backbone_weights=None,
                    pretrained_head_weights=None,
                    init_weights=confmap_config.model_config.init_weights,
                    lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                    online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                    hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                    min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                    max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                    loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                    optimizer=confmap_config.trainer_config.optimizer_name,
                    learning_rate=confmap_config.trainer_config.optimizer.lr,
                    amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                )

                confmap_model.eval()
                confmap_model.model = confmap_converted_model
                confmap_model.to(device)

            confmap_model.eval()

            if backbone_ckpt_path is not None and head_ckpt_path is not None:
                logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path, map_location=device, weights_only=False
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".backbone" in k
                }
                confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

            elif backbone_ckpt_path is not None:
                logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
                ckpt = torch.load(
                    backbone_ckpt_path, map_location=device, weights_only=False
                )
                confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

            if head_ckpt_path is not None:
                logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
                ckpt = torch.load(
                    head_ckpt_path, map_location=device, weights_only=False
                )
                ckpt["state_dict"] = {
                    k: ckpt["state_dict"][k]
                    for k in ckpt["state_dict"].keys()
                    if ".head_layers" in k
                }
                confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

            confmap_model.to(device)

        else:
            confmap_config = None
            confmap_model = None

        if centroid_config is not None:
            preprocess_config["scale"] = (
                centroid_config.data_config.preprocessing.scale
                if preprocess_config["scale"] is None
                else preprocess_config["scale"]
            )
            preprocess_config["ensure_rgb"] = (
                centroid_config.data_config.preprocessing.ensure_rgb
                if preprocess_config["ensure_rgb"] is None
                else preprocess_config["ensure_rgb"]
            )
            preprocess_config["ensure_grayscale"] = (
                centroid_config.data_config.preprocessing.ensure_grayscale
                if preprocess_config["ensure_grayscale"] is None
                else preprocess_config["ensure_grayscale"]
            )
            preprocess_config["max_height"] = (
                centroid_config.data_config.preprocessing.max_height
                if preprocess_config["max_height"] is None
                else preprocess_config["max_height"]
            )
            preprocess_config["max_width"] = (
                centroid_config.data_config.preprocessing.max_width
                if preprocess_config["max_width"] is None
                else preprocess_config["max_width"]
            )

        else:
            preprocess_config["scale"] = (
                confmap_config.data_config.preprocessing.scale
                if preprocess_config["scale"] is None
                else preprocess_config["scale"]
            )
            preprocess_config["ensure_rgb"] = (
                confmap_config.data_config.preprocessing.ensure_rgb
                if preprocess_config["ensure_rgb"] is None
                else preprocess_config["ensure_rgb"]
            )
            preprocess_config["ensure_grayscale"] = (
                confmap_config.data_config.preprocessing.ensure_grayscale
                if preprocess_config["ensure_grayscale"] is None
                else preprocess_config["ensure_grayscale"]
            )
            preprocess_config["max_height"] = (
                confmap_config.data_config.preprocessing.max_height
                if preprocess_config["max_height"] is None
                else preprocess_config["max_height"]
            )
            preprocess_config["max_width"] = (
                confmap_config.data_config.preprocessing.max_width
                if preprocess_config["max_width"] is None
                else preprocess_config["max_width"]
            )

        preprocess_config["crop_size"] = (
            confmap_config.data_config.preprocessing.crop_size
            if preprocess_config["crop_size"] is None and confmap_config is not None
            else preprocess_config["crop_size"]
        )

        # create an instance of TopDownPredictor class
        obj = cls(
            centroid_config=centroid_config,
            centroid_model=centroid_model,
            confmap_config=confmap_config,
            confmap_model=confmap_model,
            centroid_backbone_type=centroid_backbone_type,
            centered_instance_backbone_type=centered_instance_backbone_type,
            skeletons=skeletons,
            peak_threshold=peak_threshold,
            integral_refinement=integral_refinement,
            integral_patch_size=integral_patch_size,
            batch_size=batch_size,
            max_instances=max_instances,
            return_confmaps=return_confmaps,
            device=device,
            preprocess_config=preprocess_config,
            anchor_part=anchor_part,
            max_stride=(
                centroid_config.model_config.backbone_config[
                    f"{centroid_backbone_type}"
                ]["max_stride"]
                if centroid_config is not None
                else confmap_config.model_config.backbone_config[
                    f"{centered_instance_backbone_type}"
                ]["max_stride"]
            ),
        )

        obj._initialize_inference_model()
        return obj

    def make_pipeline(
        self,
        inference_object: Union[str, Path, sio.Labels, sio.Video],
        queue_maxsize: int = 8,
        frames: Optional[list] = None,
        only_labeled_frames: bool = False,
        only_suggested_frames: bool = False,
        video_index: Optional[int] = None,
        video_dataset: Optional[str] = None,
        video_input_format: str = "channels_last",
    ):
        """Make a data loading pipeline.

        Args:
            inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
            queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
            frames: (list) List of frames indices. If `None`, all frames in the video are used. Default: None.
            only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
            only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
            video_index: (int) Integer index of video in .slp file to predict on. To be used
                with an .slp path as an alternative to specifying the video path.
            video_dataset: (str) The dataset for HDF5 videos.
            video_input_format: (str) The input_format for HDF5 videos.

        Returns:
            This method initiates the reader class (doesn't return a pipeline) and the
            Thread is started in Predictor._predict_generator() method.
        """
        if isinstance(inference_object, str) or isinstance(inference_object, Path):
            inference_object = (
                sio.load_slp(inference_object)
                if inference_object.endswith(".slp")
                else sio.load_video(
                    inference_object,
                    dataset=video_dataset,
                    input_format=video_input_format,
                )
            )

        # LabelsReader provider
        if isinstance(inference_object, sio.Labels) and video_index is None:
            provider = LabelsReader

            self.preprocess = False

            frame_buffer = Queue(maxsize=queue_maxsize)

            self.pipeline = provider(
                labels=inference_object,
                frame_buffer=frame_buffer,
                instances_key=self.instances_key,
                only_labeled_frames=only_labeled_frames,
                only_suggested_frames=only_suggested_frames,
            )
            self.videos = self.pipeline.labels.videos

        else:
            provider = VideoReader
            if self.centroid_config is None:
                message = (
                    "Ground truth data was not detected... "
                    "Please load both models when predicting on non-ground-truth data."
                )
                logger.error(message)
                raise ValueError(message)

            self.preprocess = False

            if isinstance(inference_object, sio.Labels) and video_index is not None:
                labels = inference_object
                self.pipeline = provider.from_video(
                    video=labels.videos[video_index],
                    queue_maxsize=queue_maxsize,
                    frames=frames,
                )

            else:  # for mp4 or hdf5 videos
                frame_buffer = Queue(maxsize=queue_maxsize)
                self.pipeline = provider(
                    video=inference_object,
                    frame_buffer=frame_buffer,
                    frames=frames,
                )

            self.videos = [self.pipeline.video]

    def _make_labeled_frames_from_generator(
        self,
        generator: Iterator[Dict[str, np.ndarray]],
    ) -> sio.Labels:
        """Create labeled frames from a generator that yields inference results.

        This method converts pure arrays into SLEAP-specific data structures and assigns
        tracks to the predicted instances if tracker is specified.

        Args:
            generator: A generator that returns dictionaries with inference results.
                This should return dictionaries with keys `"instance_image"`, `"video_idx"`,
                `"frame_idx"`, `"pred_instance_peaks"`, `"pred_peak_values"`, and
                `"centroid_val"`. This can be created using the `_predict_generator()`
                method.

        Returns:
            A `sio.Labels` object with `sio.PredictedInstance`s created from
            arrays returned from the inference result generator.
        """
        # open video backend for tracking
        for video in self.videos:
            if not video.open_backend:
                video.open()

        preds = defaultdict(list)
        predicted_frames = []
        skeleton_idx = 0
        # Loop through each predicted instance.
        for ex in generator:
            # loop through each sample in a batch
            for (
                video_idx,
                frame_idx,
                bbox,
                pred_instances,
                pred_values,
                instance_score,
                org_size,
            ) in zip(
                ex["video_idx"],
                ex["frame_idx"],
                ex["instance_bbox"],
                ex["pred_instance_peaks"],
                ex["pred_peak_values"],
                ex["centroid_val"],
                ex["orig_size"],
            ):
                if np.isnan(pred_instances).all():
                    continue
                pred_instances = pred_instances + bbox.squeeze(axis=0)[0, :]
                preds[(int(video_idx), int(frame_idx))].append(
                    sio.PredictedInstance.from_numpy(
                        points_data=pred_instances,
                        skeleton=self.skeletons[skeleton_idx],
                        point_scores=pred_values,
                        score=instance_score,
                    )
                )
        for key, inst in preds.items():
            # Create list of LabeledFrames.
            video_idx, frame_idx = key
            lf = sio.LabeledFrame(
                video=self.videos[video_idx],
                frame_idx=frame_idx,
                instances=inst,
            )

            if self.tracker:
                lf.instances = self.tracker.track(
                    untracked_instances=inst, frame_idx=frame_idx, image=lf.image
                )

            predicted_frames.append(lf)

        pred_labels = sio.Labels(
            videos=self.videos,
            skeletons=self.skeletons,
            labeled_frames=predicted_frames,
        )
        return pred_labels

from_trained_models(centroid_ckpt_path=None, confmap_ckpt_path=None, backbone_ckpt_path=None, head_ckpt_path=None, peak_threshold=0.2, integral_refinement='integral', integral_patch_size=5, batch_size=4, max_instances=None, return_confmaps=False, device='cpu', preprocess_config=None, anchor_part=None) classmethod

Create predictor from saved models.

Parameters:

Name Type Description Default
centroid_ckpt_path Optional[Text]

Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).

None
confmap_ckpt_path Optional[Text]

Path to a centered-instance ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).

None
backbone_ckpt_path Optional[str]

(str) To run inference on any .ckpt other than best.ckpt from the model_paths dir, the path to the .ckpt file should be passed here.

None
head_ckpt_path Optional[str]

(str) Path to .ckpt file if a different set of head layer weights are to be used. If None, the best.ckpt from model_paths dir is used (or the ckpt from backbone_ckpt_path if provided.)

None
peak_threshold float

(float) Minimum confidence threshold. Peaks with values below this will be ignored. Default: 0.2

0.2
integral_refinement str

If None, returns the grid-aligned peaks with no refinement. If "integral", peaks will be refined with integral regression. Default: "integral".

'integral'
integral_patch_size int

(int) Size of patches to crop around each rough peak as an integer scalar. Default: 5.

5
batch_size int

(int) Number of samples per batch. Default: 4.

4
max_instances Optional[int]

(int) Max number of instances to consider from the predictions.

None
return_confmaps bool

(bool) If True, predicted confidence maps will be returned along with the predicted peak values and points. Default: False.

False
device str

(str) Device on which torch.Tensor will be allocated. One of the ("cpu", "cuda", "mps"). Default: "cpu"

'cpu'
preprocess_config Optional[OmegaConf]

(OmegaConf) OmegaConf object with keys as the parameters in the data_config.preprocessing section.

None
anchor_part Optional[str]

(str) The name of the node to use as the anchor for the centroid. If not provided, the anchor part in the training_config.yaml is used instead. Default: None.

None

Returns:

Type Description
TopDownPredictor

An instance of TopDownPredictor with the loaded models.

One of the two models can be left as None to perform inference with ground truth data. This will only work with LabelsReader as the provider.

Source code in sleap_nn/inference/predictors.py
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
@classmethod
def from_trained_models(
    cls,
    centroid_ckpt_path: Optional[Text] = None,
    confmap_ckpt_path: Optional[Text] = None,
    backbone_ckpt_path: Optional[str] = None,
    head_ckpt_path: Optional[str] = None,
    peak_threshold: float = 0.2,
    integral_refinement: str = "integral",
    integral_patch_size: int = 5,
    batch_size: int = 4,
    max_instances: Optional[int] = None,
    return_confmaps: bool = False,
    device: str = "cpu",
    preprocess_config: Optional[OmegaConf] = None,
    anchor_part: Optional[str] = None,
) -> "TopDownPredictor":
    """Create predictor from saved models.

    Args:
        centroid_ckpt_path: Path to a centroid ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
        confmap_ckpt_path: Path to a centered-instance ckpt dir with best.ckpt (or from SLEAP <=1.4 best_model.h5 - only UNet backbone is supported) and training_config.yaml (or from SLEAP <=1.4 training_config.json - only UNet backbone is supported).
        backbone_ckpt_path: (str) To run inference on any `.ckpt` other than `best.ckpt`
            from the `model_paths` dir, the path to the `.ckpt` file should be passed here.
        head_ckpt_path: (str) Path to `.ckpt` file if a different set of head layer weights
            are to be used. If `None`, the `best.ckpt` from `model_paths` dir is used (or the ckpt
            from `backbone_ckpt_path` if provided.)
        peak_threshold: (float) Minimum confidence threshold. Peaks with values below
            this will be ignored. Default: 0.2
        integral_refinement: If `None`, returns the grid-aligned peaks with no refinement.
            If `"integral"`, peaks will be refined with integral regression.
            Default: "integral".
        integral_patch_size: (int) Size of patches to crop around each rough peak as an
            integer scalar. Default: 5.
        batch_size: (int) Number of samples per batch. Default: 4.
        max_instances: (int) Max number of instances to consider from the predictions.
        return_confmaps: (bool) If `True`, predicted confidence maps will be returned
            along with the predicted peak values and points. Default: False.
        device: (str) Device on which torch.Tensor will be allocated. One of the
            ("cpu", "cuda", "mps").
            Default: "cpu"
        preprocess_config: (OmegaConf) OmegaConf object with keys as the parameters
            in the `data_config.preprocessing` section.
        anchor_part: (str) The name of the node to use as the anchor for the centroid. If not
            provided, the anchor part in the `training_config.yaml` is used instead. Default: None.

    Returns:
        An instance of `TopDownPredictor` with the loaded models.

        One of the two models can be left as `None` to perform inference with ground
        truth data. This will only work with `LabelsReader` as the provider.

    """
    centered_instance_backbone_type = None
    centroid_backbone_type = None
    if centroid_ckpt_path is not None:
        is_sleap_ckpt = False
        # Load centroid model.
        if (
            Path(centroid_ckpt_path) / "training_config.yaml"
            in Path(centroid_ckpt_path).iterdir()
        ):
            centroid_config = OmegaConf.load(
                (Path(centroid_ckpt_path) / "training_config.yaml").as_posix()
            )
        elif (
            Path(centroid_ckpt_path) / "training_config.json"
            in Path(centroid_ckpt_path).iterdir()
        ):
            is_sleap_ckpt = True
            centroid_config = TrainingJobConfig.load_sleap_config(
                (Path(centroid_ckpt_path) / "training_config.json").as_posix()
            )

        skeletons = get_skeleton_from_config(centroid_config.data_config.skeletons)

        # check which backbone architecture
        for k, v in centroid_config.model_config.backbone_config.items():
            if v is not None:
                centroid_backbone_type = k
                break

        if not is_sleap_ckpt:
            ckpt_path = (Path(centroid_ckpt_path) / "best.ckpt").as_posix()
            centroid_model = CentroidLightningModule.load_from_checkpoint(
                checkpoint_path=ckpt_path,
                model_type="centroid",
                backbone_type=centroid_backbone_type,
                backbone_config=centroid_config.model_config.backbone_config,
                head_configs=centroid_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=centroid_config.model_config.init_weights,
                lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=centroid_config.trainer_config.optimizer_name,
                learning_rate=centroid_config.trainer_config.optimizer.lr,
                amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
                map_location=device,
            )
        else:
            # Load the converted model
            centroid_converted_model = load_legacy_model(
                model_dir=f"{centroid_ckpt_path}"
            )
            centroid_model = CentroidLightningModule(
                backbone_type=centroid_backbone_type,
                model_type="centroid",
                backbone_config=centroid_config.model_config.backbone_config,
                head_configs=centroid_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=centroid_config.model_config.init_weights,
                lr_scheduler=centroid_config.trainer_config.lr_scheduler,
                online_mining=centroid_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=centroid_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=centroid_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=centroid_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=centroid_config.trainer_config.optimizer_name,
                learning_rate=centroid_config.trainer_config.optimizer.lr,
                amsgrad=centroid_config.trainer_config.optimizer.amsgrad,
            )

            centroid_model.eval()
            centroid_model.model = centroid_converted_model
            centroid_model.to(device)

        centroid_model.eval()

        if backbone_ckpt_path is not None and head_ckpt_path is not None:
            logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".backbone" in k
            }
            centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

        elif backbone_ckpt_path is not None:
            logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

        if head_ckpt_path is not None:
            logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
            ckpt = torch.load(
                head_ckpt_path, map_location=device, weights_only=False
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".head_layers" in k
            }
            centroid_model.load_state_dict(ckpt["state_dict"], strict=False)

        centroid_model.to(device)

    else:
        centroid_config = None
        centroid_model = None

    if confmap_ckpt_path is not None:
        is_sleap_ckpt = False
        # Load confmap model.
        if (
            Path(confmap_ckpt_path) / "training_config.yaml"
            in Path(confmap_ckpt_path).iterdir()
        ):
            confmap_config = OmegaConf.load(
                (Path(confmap_ckpt_path) / "training_config.yaml").as_posix()
            )
        elif (
            Path(confmap_ckpt_path) / "training_config.json"
            in Path(confmap_ckpt_path).iterdir()
        ):
            is_sleap_ckpt = True
            confmap_config = TrainingJobConfig.load_sleap_config(
                (Path(confmap_ckpt_path) / "training_config.json").as_posix()
            )

        skeletons = get_skeleton_from_config(confmap_config.data_config.skeletons)

        # check which backbone architecture
        for k, v in confmap_config.model_config.backbone_config.items():
            if v is not None:
                centered_instance_backbone_type = k
                break

        if not is_sleap_ckpt:
            ckpt_path = (Path(confmap_ckpt_path) / "best.ckpt").as_posix()
            confmap_model = TopDownCenteredInstanceLightningModule.load_from_checkpoint(
                checkpoint_path=ckpt_path,
                model_type="centered_instance",
                backbone_config=confmap_config.model_config.backbone_config,
                head_configs=confmap_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=confmap_config.model_config.init_weights,
                lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=confmap_config.trainer_config.optimizer_name,
                learning_rate=confmap_config.trainer_config.optimizer.lr,
                amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
                backbone_type=centered_instance_backbone_type,
                map_location=device,
            )
        else:
            # Load the converted model
            confmap_converted_model = load_legacy_model(
                model_dir=f"{confmap_ckpt_path}"
            )

            # Create a new LightningModule with the converted model
            confmap_model = TopDownCenteredInstanceLightningModule(
                backbone_type=centered_instance_backbone_type,
                model_type="centered_instance",
                backbone_config=confmap_config.model_config.backbone_config,
                head_configs=confmap_config.model_config.head_configs,
                pretrained_backbone_weights=None,
                pretrained_head_weights=None,
                init_weights=confmap_config.model_config.init_weights,
                lr_scheduler=confmap_config.trainer_config.lr_scheduler,
                online_mining=confmap_config.trainer_config.online_hard_keypoint_mining.online_mining,
                hard_to_easy_ratio=confmap_config.trainer_config.online_hard_keypoint_mining.hard_to_easy_ratio,
                min_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.min_hard_keypoints,
                max_hard_keypoints=confmap_config.trainer_config.online_hard_keypoint_mining.max_hard_keypoints,
                loss_scale=confmap_config.trainer_config.online_hard_keypoint_mining.loss_scale,
                optimizer=confmap_config.trainer_config.optimizer_name,
                learning_rate=confmap_config.trainer_config.optimizer.lr,
                amsgrad=confmap_config.trainer_config.optimizer.amsgrad,
            )

            confmap_model.eval()
            confmap_model.model = confmap_converted_model
            confmap_model.to(device)

        confmap_model.eval()

        if backbone_ckpt_path is not None and head_ckpt_path is not None:
            logger.info(f"Loading backbone weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".backbone" in k
            }
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        elif backbone_ckpt_path is not None:
            logger.info(f"Loading weights from `{backbone_ckpt_path}` ...")
            ckpt = torch.load(
                backbone_ckpt_path, map_location=device, weights_only=False
            )
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        if head_ckpt_path is not None:
            logger.info(f"Loading head weights from `{head_ckpt_path}` ...")
            ckpt = torch.load(
                head_ckpt_path, map_location=device, weights_only=False
            )
            ckpt["state_dict"] = {
                k: ckpt["state_dict"][k]
                for k in ckpt["state_dict"].keys()
                if ".head_layers" in k
            }
            confmap_model.load_state_dict(ckpt["state_dict"], strict=False)

        confmap_model.to(device)

    else:
        confmap_config = None
        confmap_model = None

    if centroid_config is not None:
        preprocess_config["scale"] = (
            centroid_config.data_config.preprocessing.scale
            if preprocess_config["scale"] is None
            else preprocess_config["scale"]
        )
        preprocess_config["ensure_rgb"] = (
            centroid_config.data_config.preprocessing.ensure_rgb
            if preprocess_config["ensure_rgb"] is None
            else preprocess_config["ensure_rgb"]
        )
        preprocess_config["ensure_grayscale"] = (
            centroid_config.data_config.preprocessing.ensure_grayscale
            if preprocess_config["ensure_grayscale"] is None
            else preprocess_config["ensure_grayscale"]
        )
        preprocess_config["max_height"] = (
            centroid_config.data_config.preprocessing.max_height
            if preprocess_config["max_height"] is None
            else preprocess_config["max_height"]
        )
        preprocess_config["max_width"] = (
            centroid_config.data_config.preprocessing.max_width
            if preprocess_config["max_width"] is None
            else preprocess_config["max_width"]
        )

    else:
        preprocess_config["scale"] = (
            confmap_config.data_config.preprocessing.scale
            if preprocess_config["scale"] is None
            else preprocess_config["scale"]
        )
        preprocess_config["ensure_rgb"] = (
            confmap_config.data_config.preprocessing.ensure_rgb
            if preprocess_config["ensure_rgb"] is None
            else preprocess_config["ensure_rgb"]
        )
        preprocess_config["ensure_grayscale"] = (
            confmap_config.data_config.preprocessing.ensure_grayscale
            if preprocess_config["ensure_grayscale"] is None
            else preprocess_config["ensure_grayscale"]
        )
        preprocess_config["max_height"] = (
            confmap_config.data_config.preprocessing.max_height
            if preprocess_config["max_height"] is None
            else preprocess_config["max_height"]
        )
        preprocess_config["max_width"] = (
            confmap_config.data_config.preprocessing.max_width
            if preprocess_config["max_width"] is None
            else preprocess_config["max_width"]
        )

    preprocess_config["crop_size"] = (
        confmap_config.data_config.preprocessing.crop_size
        if preprocess_config["crop_size"] is None and confmap_config is not None
        else preprocess_config["crop_size"]
    )

    # create an instance of TopDownPredictor class
    obj = cls(
        centroid_config=centroid_config,
        centroid_model=centroid_model,
        confmap_config=confmap_config,
        confmap_model=confmap_model,
        centroid_backbone_type=centroid_backbone_type,
        centered_instance_backbone_type=centered_instance_backbone_type,
        skeletons=skeletons,
        peak_threshold=peak_threshold,
        integral_refinement=integral_refinement,
        integral_patch_size=integral_patch_size,
        batch_size=batch_size,
        max_instances=max_instances,
        return_confmaps=return_confmaps,
        device=device,
        preprocess_config=preprocess_config,
        anchor_part=anchor_part,
        max_stride=(
            centroid_config.model_config.backbone_config[
                f"{centroid_backbone_type}"
            ]["max_stride"]
            if centroid_config is not None
            else confmap_config.model_config.backbone_config[
                f"{centered_instance_backbone_type}"
            ]["max_stride"]
        ),
    )

    obj._initialize_inference_model()
    return obj

make_pipeline(inference_object, queue_maxsize=8, frames=None, only_labeled_frames=False, only_suggested_frames=False, video_index=None, video_dataset=None, video_input_format='channels_last')

Make a data loading pipeline.

Parameters:

Name Type Description Default
inference_object Union[str, Path, Labels, Video]

(str) Path to .slp file or .mp4 or sio.Labels or sio.Video to run inference on.

required
queue_maxsize int

(int) Maximum size of the frame buffer queue. Default: 8.

8
frames Optional[list]

(list) List of frames indices. If None, all frames in the video are used. Default: None.

None
only_labeled_frames bool

(bool) True if inference should be run only on user-labeled frames. Default: False.

False
only_suggested_frames bool

(bool) True if inference should be run only on unlabeled suggested frames. Default: False.

False
video_index Optional[int]

(int) Integer index of video in .slp file to predict on. To be used with an .slp path as an alternative to specifying the video path.

None
video_dataset Optional[str]

(str) The dataset for HDF5 videos.

None
video_input_format str

(str) The input_format for HDF5 videos.

'channels_last'

Returns:

Type Description

This method initiates the reader class (doesn't return a pipeline) and the Thread is started in Predictor._predict_generator() method.

Source code in sleap_nn/inference/predictors.py
def make_pipeline(
    self,
    inference_object: Union[str, Path, sio.Labels, sio.Video],
    queue_maxsize: int = 8,
    frames: Optional[list] = None,
    only_labeled_frames: bool = False,
    only_suggested_frames: bool = False,
    video_index: Optional[int] = None,
    video_dataset: Optional[str] = None,
    video_input_format: str = "channels_last",
):
    """Make a data loading pipeline.

    Args:
        inference_object: (str) Path to `.slp` file or `.mp4` or sio.Labels or sio.Video to run inference on.
        queue_maxsize: (int) Maximum size of the frame buffer queue. Default: 8.
        frames: (list) List of frames indices. If `None`, all frames in the video are used. Default: None.
        only_labeled_frames: (bool) `True` if inference should be run only on user-labeled frames. Default: `False`.
        only_suggested_frames: (bool) `True` if inference should be run only on unlabeled suggested frames. Default: `False`.
        video_index: (int) Integer index of video in .slp file to predict on. To be used
            with an .slp path as an alternative to specifying the video path.
        video_dataset: (str) The dataset for HDF5 videos.
        video_input_format: (str) The input_format for HDF5 videos.

    Returns:
        This method initiates the reader class (doesn't return a pipeline) and the
        Thread is started in Predictor._predict_generator() method.
    """
    if isinstance(inference_object, str) or isinstance(inference_object, Path):
        inference_object = (
            sio.load_slp(inference_object)
            if inference_object.endswith(".slp")
            else sio.load_video(
                inference_object,
                dataset=video_dataset,
                input_format=video_input_format,
            )
        )

    # LabelsReader provider
    if isinstance(inference_object, sio.Labels) and video_index is None:
        provider = LabelsReader

        self.preprocess = False

        frame_buffer = Queue(maxsize=queue_maxsize)

        self.pipeline = provider(
            labels=inference_object,
            frame_buffer=frame_buffer,
            instances_key=self.instances_key,
            only_labeled_frames=only_labeled_frames,
            only_suggested_frames=only_suggested_frames,
        )
        self.videos = self.pipeline.labels.videos

    else:
        provider = VideoReader
        if self.centroid_config is None:
            message = (
                "Ground truth data was not detected... "
                "Please load both models when predicting on non-ground-truth data."
            )
            logger.error(message)
            raise ValueError(message)

        self.preprocess = False

        if isinstance(inference_object, sio.Labels) and video_index is not None:
            labels = inference_object
            self.pipeline = provider.from_video(
                video=labels.videos[video_index],
                queue_maxsize=queue_maxsize,
                frames=frames,
            )

        else:  # for mp4 or hdf5 videos
            frame_buffer = Queue(maxsize=queue_maxsize)
            self.pipeline = provider(
                video=inference_object,
                frame_buffer=frame_buffer,
                frames=frames,
            )

        self.videos = [self.pipeline.video]